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Abstract

Radial basis function domain-type collocation method is applied for an elliptic partial differential equation with nonlocal multipoint
boundary condition. A geometrically flexible meshless framework is suitable for imposing nonclassical boundary conditions which
relate the values of unknown function on the boundary to its values at a discrete set of interior points. Some properties of the
method are investigated by a numerical study of a test problem with the manufactured solution. Attention is mainly focused on the
influence of nonlocal boundary condition. The standard collocation and least squares approaches are compared. In addition to its
geometrical flexibility, the examined method seems to be less restrictive with respect to parameters of nonlocal conditions than, for
example, methods based on finite differences.
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1. Introduction

Mathematical models arising in various fields of science
and engineering (for example, thermoelasticity [1], thermody-
namics [2], hydrodynamics [3], biological fluid dynamics [4]
or plasma physics [5]) are very often expressed in terms of par-
tial differential equations (PDEs) and nonclassical constraints,
which are usually identified as nonlocal (boundary) conditions.
As a rule, the appearance of nonlocal conditions makes quite
a number of theoretical and numerical challenges. Therefore,
nonlocal differential problems receive a lot of attention in the
literature. Many studies are dedicated to various aspects of the
numerical solution of such nonclassical problems.

Finite differences, finite elements or finite volumes are ex-
amples of discretisation techniques which are widely and suc-
cessfully applied to approximate solution of various PDEs. The-
se traditional approaches are based on the domain discretisation
using mesh. The mesh generation can be quite a difficult task in
case of three-dimensional domains with complex shapes. One
of the ways to overcome problems related to the meshing are
so-called meshless methods, which gained a lot of attention in
recent years (see e.g. [6–8]).
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In this paper, for the solution of a model problem with non-
local boundary condition we apply a meshless discretisation
technique based the radial basis functions (RBFs) [9–14]. In
papers [15–19], RBFs were already used for the spatial dis-
cretisation of time dependent (parabolic and hyperbolic) equa-
tions with nonlocal integral conditions. Experiments with var-
ious test examples have demonstrated that RBF-based colloca-
tion methods can be successfully applied to solve such a kind
of nonlocal problems. Recently, the method of approximate
particular solutions using multiquadric (MQ) RBFs has been
applied to the time-fractional diffusion equation with nonlocal
boundary condition [20].

It is well-known that properties of the numerical methods
for nonlocal differential problems usually depend on the pa-
rameters of nonlocal boundary conditions. For example, the
stability of finite difference schemes are related to the spectral
properties of certain matrices and, in case of nonlocal problems,
these properties depend on the parameters appearing in nonlo-
cal conditions [21–23]. Therefore, numerical methods for the
solution of PDEs with nonlocal conditions require special at-
tention. The influence of nonlocal conditions on the properties
of any numerical method which is applied to solve a certain
nonlocal problem should always be investigated very carefully.

In paper [24], RBF collocation technique was applied to
solve a model problem for two-dimensional Poisson equation
on the unit rectangle. Two-point or integral condition was for-
mulated on one side of the rectangle. Besides the standard test-
ing of the method, the influence of nonlocal conditions on the
optimal selection of the RBF shape parameter, as well as on
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the conditioning and accuracy of the method was investigated.
Later, the same problem has been solved in paper [25], where
collocation methods based on Haar wavelets and RBFs have
been applied. RBF-based collocation technique was also used
to solve a multidimensional elliptic equation with nonlocal inte-
gral conditions [26]. The influence of the RBF shape parameter
and distribution of the nodes on the accuracy of the method as
well as the influence of nonlocal conditions on the conditioning
of the collocation matrix were investigated by analysing two-
and three-dimensional test problems with the manufactured so-
lutions.

In the present work we continue our investigation and con-
sider a model problem which consists of Poisson equation with
mixed boundary conditions. One of these conditions is nonlocal
multipoint boundary condition relating the boundary values of
unknown function to several values inside the domain. A mesh-
less method for the solution of such problem allows to eliminate
connection between the domain discretisation and points defin-
ing nonlocal part of the multipoint boundary condition. To the
best of our knowledge, this is the first time when an elliptic PDE
with nonlocal multipoint boundary condition is solved using an
RBF-based meshless method.

The main aim of this work is to investigate the properties of
the method and, in particular, their dependence on the param-
eters of nonlocal condition. We do not provide any theoretical
results. Instead, we conduct an extensive numerical study. The
insights made from the numerical study can help us gain the ba-
sic understanding of the properties of the method. It should be
mentioned that, when dealing with nonlocal problems, numeri-
cal studies (computational experiments) are often utilised as re-
search methods even when such classical and well-established
techniques as finite differences are applied (see e.g. [22, 27]).

The paper is organised as follows. In Section 2, we give
a detailed formulation of the model problem and some addi-
tional related references. A meshless method based on RBF
collocation is described in Section 3. By analysing a test exam-
ple, the method is investigated in Section 4. Finally, Section 5
concludes the paper with summarising remarks and possible di-
rections for the future research.

2. Model problem

A model problem considered in this paper consists of Pois-
son equation and mixed boundary conditions:

− ∆u = f in Ω,
u = g on Γ1,

u =
∑

x∗l ∈Ω∗
γlu(x∗l ) + h on Γ2,

(1a)
(1b)

(1c)

where Ω ⊂ Rd (d = 2, 3) is a bounded domain, ∂Ω = Γ1 ∪ Γ2
(with Γ1 ∩ Γ2 = ∅ and Γ2 , ∅), f , g and h are given functions.
While Dirichlet condition (1b) is an example of classical boun-
dary condition, the condition (1c) is nonlocal and relates the
values of the solution u on the boundary part Γ2 to the values
at the interior points x∗l ∈ Ω∗ ⊂ Ω (subset Ω∗ is discrete). The

nonlocal condition (1c) is defined by parameters γl and x∗l . The
weights γl can be either constants, or functions (γl = γl (x)), or
values of the functions at x∗l ∈ Ω∗ (γl = γl

(
x∗l

)
). When γl ≡ 0,

condition (1c) becomes Dirichlet boundary condition. If con-
dition (1c) relates the boundary values to a single interior point
(|Ω∗| = 1), it is usually referenced to as Bitsadze–Samarskii
nonlocal condition.

Nonlocal multipoint boundary conditions are related to non-
local integral conditions [21]. For instance, the multipoint con-
dition (1c) is a special case of nonlocal integral condition

u =

∫
Ω

γ (x) u (x) dx + h on Γ2.

Indeed, we get the nonlocal multipoint boundary condition (1c)
when the weight function is defined as

γ (x) =
∑

x∗l ∈Ω∗
γlδ

(
‖ x − x∗l ‖2

)
,

where δ is the Dirac delta function.
Numerical methods for the solution of PDEs with nonlocal

discrete boundary conditions have been considered in various
papers. Usually, such numerical methods are based on finite
differences. For example, we can mention papers related to
the approximate solution of nonlocal problems for elliptic [28–
31], elliptic–parabolic [32], hyperbolic [33, 34], or hyperbolic–
parabolic [35] equations with multipoint or Bitsadze–Samarskii
nonlocal boundary conditions. The paper [36] presents an effi-
cient way of implementing general multipoint constraint condi-
tions arising in finite element analysis related to structural me-
chanics. In paper [37], a two-dimensional reaction–diffusion
problem with Bitsadze–Samarskii nonlocal boundary condition
was solved using meshless local Petrov–Galerkin (MLPG) me-
thod and MQ RBFs were used for the spatial discretisation of
local weak equations.

3. Construction of the method

3.1. A brief overview of radial basis functions
RBFs already proved to be quite an effective tool both for

the scattered data interpolation [10] and approximate solution
of PDEs [11–14]. We give a very brief introduction to RBFs.
More details can be found in books [9, 10, 12, 14]. The book [12]
also reviews the latest advances on RBF collocation methods
for the numerical solution of PDEs.

A multivariate real-valued function Φ : Rd → R is called a
radial function if there exists a univariate function φ : [0,∞)→
R such that

Φ (x) = φ (‖ x ‖) ,

where ‖ · ‖ is some norm on Rd (usually the Euclidean norm
is used). That is, the function Φ (x) can be expressed in the
Euclidean distance variable r =‖ x ‖.

Table 1 gives several examples of widely used RBFs. All
these RBFs are globally supported and infinitely smooth. The
shape (flatness) of each given RBF is controlled by a positive
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parameter ε which is called the shape parameter. Equivalently,
a reciprocal shape parameter c = 1/ε also can be used in the
expressions of the same functions.

In the case of an interpolation problem, the positive definite-
ness of RBF is an important property which ensures the invert-
ibility of the interpolation matrix. IMQ, IQ and GA RBFs are
strictly positive definite, while MQ RBF is conditionally posi-
tive definite of order one [9, 10]. The conditional positive defi-
niteness means that the invertibility of the interpolation problem
is ensured by adding a polynomial of a certain order to the inter-
polant and by augmenting the interpolation system with some
additional equations. Since the polynomial augmentation can
increase the condition number of the interpolant matrix but not
necessary the accuracy of the interpolation [38], and singular
cases of the interpolation matrix almost never appear in prac-
tice, we will construct and investigate the method without such
modification.

RBF-based collocation methods can be categorised as domain-
type or boundary-type methods [12]. The Kansa method ap-
plied in this paper is an example of domain-type methods, while
the method of fundamental solutions (MFS) is one of well-
known boundary-type methods.

3.2. Representation of the domain
Instead of meshing, which is essential procedure, for exam-

ple, in finite element method, meshless methods require only
domain representation by nodes which can be scattered in un-
structured fashion. We use the set of nodes (collocation points)

Ξ = {xi}
N
i=1 ⊂ Ω,

which consists of three pairwise disjoint subsets representing
domain Ω and its boundary parts Γ1 and Γ2:

ΞΩ = {x ∈ Ξ : x ∈ Ω} ⊂ Ω,

ΞΓ1 = {x ∈ Ξ : x ∈ Γ1} ⊂ Γ1,

ΞΓ2 = {x ∈ Ξ : x ∈ Γ2} ⊂ Γ2.

We assume that Ξ = ΞΩ ∪ ΞΓ1 ∪ ΞΓ2 , ΞΩ , ∅, ΞΓ1 , ∅ (if
Γ1 , ∅) and ΞΓ2 , ∅. We also assume that Ω∗ ⊂ ΞΩ, i.e., points
x∗l defining nonlocal boundary condition (1c) are included in the
domain representation.

When differential problems with nonlocal multipoint boun-
dary conditions are solved using finite differences, usually it is
assumed that the points x∗l coincide with some points of the grid
(see e.g. [21]). Such assumption simplifies theoretical analysis
of the numerical scheme [39] but requires certain modifications.

Table 1
Globally supported and infinitely smooth RBFs (r = ‖x‖).

RBF Definition

Multiquadric (MQ) φ (r) =
√

1 + (εr)2

Inverse Multiquadric (IMQ) φ (r) = (
√

1 + (εr)2)−1

Inverse Quadric (IQ) φ (r) = (1 + (εr)2)−1

Gaussian (GA) φ (r) = exp
(
−(εr)2

)

In order to impose nonlocal multipoint boundary condition sim-
ilar to (1c) in a mesh-based method, we need either to ensure
that the points x∗l also would be the nodes of the mesh, or to
approximate these points by substituting them with closely lo-
cated nodes of the mesh. The first approach requires additional
mesh modifications, while the later can decrease the accuracy
of the results, especially when coarse mesh is used. Here ge-
ometrical flexibility of meshless methods comes in handy. In
case of meshless method, nonlocal multipoint boundary con-
ditions can be imposed without any additional treatment. It is
enough to ensure that all points x∗l ∈ Ω∗ belong to the set Ξ.

3.3. Collocation in the least squares mode
The collocation points Ξ not necessary should coincide with

the RBF centers (source points). We consider the case when the
set of RBF centers Ξ′ is a subset of the set of collocation points.
Thus, we assume that

Ξ′ = {x′i}
M
i=1 ⊆ Ξ,

where Ξ′ = Ξ′
Ω
∪Ξ′

Γ1
∪Ξ′

Γ2
with Ξ′

Ω
⊆ ΞΩ, Ξ′

Γ1
⊆ ΞΓ1 , Ξ′

Γ2
⊆ ΞΓ2 ,

and |Ξ′| = M ≤ N.
As usually, we seek for an approximate solution to the prob-

lem (1) in the form

u (x) = φT (x) λ,

where

φ (x) = [φ1 (x) , φ2 (x) , . . . , φM (x)]T

and

φi (x) = φ
(
‖ x − x′i ‖2

)
for a given RBF φ and a source point x′i ∈ Ξ′, ‖·‖2 denotes the
Euclidean norm, and λ = [λ1, λ2, . . . , λM]T are the coefficients
to be determined using collocation approach.

By requiring approximate solution u (x) to satisfy Poisson
equation (1a) on the nodes representing Ω we get the following
linear equations:

−∆φT (x) λ = f (x) , x ∈ ΞΩ. (2a)

From Dirichlet boundary condition (1b) (if Γ1 , ∅) we obtain
equations

φT (x) λ = g (x) , x ∈ ΞΓ1 , (2b)

and discretisation of nonlocal multipoint boundary condition
(1c) leads toφT (x) −

∑
xl∈Ω

γlφ
T
(
xl

) λ = h (x) , x ∈ ΞΓ2 . (2c)

Thus, in order to determine coefficients λ, we need to solve
the linear system (2):

Aλ = b, (3)
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Figure 1: Two-dimensional problem description. The boundary parts Γ1 and Γ2
are depicted as solid and dashed lines, respectively.

Figure 2: The exact solution of the test problem.

where A is the collocation matrix and b is the right-hand side
vector. If M < N, the system (3) is overdetermined and we can
treat it as a linear least squares problem. The solution of this
problem is

λ̂ = arg min
λ∈RM

‖ Aλ − b ‖2 .

It is known that matrix (A)N×M tends to be ill-conditioned
as ε → 0. That is probably the main drawback of all collocation
methods based on globally supported RBFs. The influence of
the shape parameter will be illustrated and some properties of
the method will be investigated in the numerical study.

Figure 3: Representation of the domain Ω and its boundary ∂Ω: R = 0.5,
|ΞΩ | = 100, |Ξ′

Ω
| = 50, |ΞΓ1 | = 59, |ΞΓ2 | = 21, |Ω∗ | = 10, source points are

denoted using crossed circles and points of the set Ω∗ are filled.

4. Numerical study

4.1. Technical details
A two-dimensional (d = 2) problem with the manufactured

solution was analysed in order to demonstrate the applicability
and efficiency of the method, as well as to investigate some of
its properties. The problem was formulated on the unit rectan-
gle with a cut of the radius R (see Fig. 1). Three different cases
(examples) of the weights γl were considered:

Case 1: γl are consants: γl ≡ γ, γ is a constant;

Case 2: γl are functions: γl = γl (x) ≡ γ· ‖ (1, 0) − x ‖2;

Case 3: γl are values of the functions at x∗l ∈ Ω∗: γl = γl

(
x∗l

)
≡

γ· ‖ x∗l ‖2.

In all cases, the initial data was chosen so that the exact solution
of the problem would be the function

u (x) = x exp
(
y2 − 1

)
, x = (x, y) .

In Fig. 2, this solution is depicted on the domain with the cut of
the radius R = 0.5.

The representation of the domain Ω (R = 0.5) which was
used in the study is depicted in Fig. 3. The boundary parts Γ1
and Γ2 were represented by regularly distributed nodes, while
the nodes representing Ω were scattered completely randomly.
The set of source points used in the least squares mode was

Ξ′ = ΞΓ1 ∪ ΞΓ2 ∪ Ξ′Ω,

where Ξ′
Ω

is consisted of nodes randomly selected from ΞΩ (see
Fig. 3). The same representation of the domain as well as given
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distribution of the source points was used in the entire numeri-
cal study.

The distribution of the points x∗l ∈ Ω∗ on the domain Ω was
fixed everywhere except the experiment in which the influence
of this distribution was investigated. Also we assumed that γl ≡

1 by default, and different values of γl were used only when the
influence of these parameters was investigated.

The accuracy of the method can be estimated using various
error measures such as the normalised L2-error

EL2 =

√∑
x∈Ξtest

(u (x) − u (x))2∑
x∈Ξtest

u2 (x)
.

where Ξtest ⊂ Ω is a set of test points. In our numerical study,
the accuracy was estimated on the collocation nodes (Ξtest =

Ξ). The conditioning of the matrix A was evaluated using the
traditional condition number

κ (A) =
σmax

σmin
,

where σmax and σmin are the maximal and minimal singular val-
ues of the matrix.

The method has been implemented in Python programming
language using SciPy package. The linear problem (3) was
solved using lstsq routine from linalg subpackage [40]. This
routine was used to solve both the standard collocation system
(M = N) and the least squares problem (M < N). In com-
parison with the routine solve, which was used in our pre-
vious studies [24, 26], the routine lstsq allows to solve the
linear problems obtained by using smaller values of the shape
parameter ε. A useful analysis of direct solvers (available both
in Matlab and Python environments) applied to linear systems
arising from the interpolation and the approximation of PDEs
using RBFs is given in [41].

The presented results were obtained using GA RBFs with
the shape parameter ε = 2.0 and γ ≡ 1, unless mentioned oth-
erwise.

4.2. Results and discussion

4.2.1. Selection of the shape parameter
Successful selection of the RBF shape parameter ε is of

great importance to the accuracy of the numerical results. Small
values of the shape parameter are required in order to get accu-
rate results. On the other hand, the method becomes useless due
to ill-conditioning if this parameter is too small. Here we deal
with the so-called uncertainty (or trade-off ) principle [10, 42].

There exist various techniques for the optimal selection of
the shape parameter (see e.g. [43–46]). The multiple criteria
decision making techniques have been applied in paper [47].
Recently, hybrid and binary shape parameter selection strate-
gies have been proposed and investigated [48]. However, this
question is not completely answered and successful selection
of the shape parameter is one of the most challenging problems
related to the application of RBF-based methods.

To illustrate the importance of the shape parameter ε, we
have solved the examined test problem with different values of

this shape parameter. We also compared results obtained using
the standard collocation approach and the method in the least
squares mode.

From Fig. 4 we see that the method in the least squares
mode has better conditioning but lower accuracy. The same
figure allows to indicate the range of such values of the shape
parameters which allow to obtain results of a reasonable accu-
racy. Once again we emphasise that the problem of the optimal
selection of the shape parameter is open. However, our previ-
ous study [24] indicates that the variability of the optimal shape
parameters with respect to parameters of nonlocal conditions is
usually low. This allows us to expect that if the shape param-
eter could be successfully selected for a problem with classi-
cal boundary conditions, the same value of the shape parameter
could be used when solving a nonlocal problem.

4.2.2. Accuracy of approximation of nonlocal boundary condi-
tion

Nonlocal boundary conditions such as (1c) reflect physical
situations in which direct measurements of the data on the do-
main boundary are impossible, or the data on the boundary de-
pend on the data inside the domain. Besides the examination of
the general accuracy of the approximate solution obtained us-
ing the considered method, we also investigated how accurately
this method can recover the unknown solution on the boundary
of the domain.

Fig. 5 presents the absolute errors of the obtained approxi-
mate solutions. From this figure we observe that it is important
to represent the domain by nodes distributed as uniformly as
possible. The peaks of the errors are located in the areas which
lack collocation points.

In Fig. 6 we see the absolute errors on the boundary Γ2
where the solution is defined by nonlocal multipoint boundary
condition (1c). The standard collocation gives smaller variance
in the absolute error calculated on the boundary Γ2.

4.2.3. Influence of nonlocal boundary condition on the proper-
ties of the method

Nonlocal boundary conditions usually have strong influence
on the properties of the numerical method which is applied to
solve a nonlocal differential problem. In comparison to clas-
sical cases, theoretical investigations of such methods become
more difficult and require applying various nonstandard tech-
niques. For example, stability analysis of finite difference sche-
mes for PDEs with nonlocal boundary conditions requires to in-
vestigate the spectrum of special non-symmetric matrices (see
e.g. [21]). Such investigations sometimes can be so challenging
that classical analytical methods are not enough to answer all
the questions [22, 27].

First of all, we investigated how the location of the points x∗l
defining nonlocal boundary condition (1c) affects the properties
of the method (its conditioning and accuracy). We used exactly
the same domain representation which is given in Fig. 3. Points
x∗l were randomly selected from the set Ξ′

Ω
(|Ω∗| = 10). The

weight γ in all three cases was assumed to be equal to 1. The
sample of 1000 such trials was generated and analysed.
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Figure 4: The dependence of the accuracy and conditioning of the method in the standard collocation (red curves) and least squares (green curves) modes on the
values of the GA RBF shape parameter. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

In Fig. 7 the results of this experiment are depicted, while
in Table 2 the descriptive statistics (the minimal and maximal
values, quartiles, means, standard deviations and coefficients
of variance of the normalised L2-errors and condition numbers
κ (A)) is reported. We were mainly interested in the variability
of the accuracy with respect to the location of points x∗l . The
variability is measured by the standard deviation or by the co-
efficient of variance (the ratio of the standard deviation to the
mean). From Table 2 we can see that the coefficients of vari-
ance are smaller than one in all the cases, i.e. the variability
of the errors with respect to the distribution of points x∗l is low.
Moreover, in all three cases the variability in errors EL2 , con-
trary to condition numbers κ (A), is lower when the standard
collocation approach is applied.

We also investigated the influence of the weights γl. Under
assumption that all the weights γl ≡ γ, we solved the test prob-
lem with various values of γ. Representation of the domain and
location of points x∗l were fixed (see Fig. 3).

In the considered test problem, nonlocal boundary condi-
tion (1c) is defined on a relatively small part of the boundary

∂Ω. However, from Fig. 8 we see that this condition has quite
strong negative influence on the conditioning of the matrix A. It
is clear that the conditioning of the method tends to deteriorate
as |γ| increases. Despite of this, we can achieve quite accurate
results in a wide range of positive or negative values of γ.

5. Concluding remarks

We have constructed a meshless method for the solution of
an elliptic boundary value problem involving nonlocal multi-
point boundary condition. The method is based on the col-
location of RBFs. By analysing a two-dimensional test prob-
lem, we demonstrated the applicability and efficiency of the
method. Geometrical flexibility of the method allows us to im-
pose nonlocal multipoint boundary conditions very easily. We
considered only a two-dimensional test example but RBF-based
meshless methods can be extended for multidimensional prob-
lems without any significant additional effort. While the me-
thod has disadvantages which are quite common between RBF-
based methods (sensitivity to the shape parameter, ill-conditi-
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Figure 5: The absolute errors |u(x, y)−u(x, y)| obtained using the method in the standard collocation (top row) and least squares (bottom row) modes (the collocation
and source points are denoted as in Fig. 3).

Figure 6: The absolute errors |u(x, y) − u(x, y)| obtained using the method in the standard collocation (red curves) and least squares (green curves) modes on the
boundary part Γ2 (points (x, y) = (x,

√
R2 − x2)). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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Figure 7: The errors EL2 and condition numbers κ (A) obtained applying the method in the standard collocation (red curves) and least squares (green curves) modes
for the test problem with 1000 different distributions of points x∗l . (For interpretation of the references to colour in this figure, the reader is referred to the web
version of this article.)

Table 2: Descriptive statistics of the errors EL2 and condition numbers κ (A) obtained applying the method for the test problem with 1000 different distributions of
points x∗l .

Case 1 Case 2 Case 3

EL2 κ (A) EL2 κ (A) EL2 κ (A)

Standard collocation
Min. 9.23903063 × 10−7 3.18749387 × 1018 7.92397600 × 10−7 3.54020212 ×1018 6.74089780 × 10−7 3.08649045 × 1018

Q1 1.61880912 × 10−6 1.06516023 × 1019 1.73377778 × 10−6 1.07524772 × 1019 1.77451788 × 10−6 1.05842896 × 1019

Q2 (median) 1.80608282 × 10−6 1.85106654 × 1019 2.08031674 × 10−6 1.90036992 × 1019 2.04331856 × 10−6 1.89319852 × 1019

Q3 2.13492762 × 10−6 3.99630073 × 1019 3.03098088 × 10−6 4.21979870 × 1019 2.46350102 × 10−6 3.97811914 × 1019

Max. 3.97150860 × 10−6 4.77346066 × 1021 6.05333836 × 10−6 1.30464709 × 1022 4.26324657 × 10−6 6.02673054 × 1022

Mean 1.94105748 × 10−6 6.75872754 × 1019 2.41986521 × 10−6 8.66988466 × 1019 2.14058392 × 10−6 1.41517304 × 1020

Standard deviation 4.64836023 × 10−7 2.66588695 × 1020 8.77979417 × 10−7 5.17670752 × 1020 5.30983206 × 10−7 2.04657717 × 1021

Coefficient of variance 2.39475660 × 10−1 3.94436221 × 100 3.62821620 × 10−1 5.97090703 × 100 2.48055309 × 10−1 1.44616743 × 101

Least squares mode
Min. 1.44330461 × 10−5 5.79845300 × 1016 1.44235194 × 10−5 6.13269051 × 1016 1.43643690 × 10−5 6.31777260 × 1016

Q1 1.54616742 × 10−5 7.86434211 × 1016 1.59560175 × 10−5 8.21110146 × 1016 1.82322409 × 10−5 8.24833076 × 1016

Q2 (median) 1.77345882 × 10−5 8.68939671 × 1016 1.96894301 × 10−2 8.94004911 × 1016 2.49316895 × 10−5 9.00126013 × 1016

Q3 2.44841949 × 10−5 9.65011843 × 1016 2.92639628 × 10−5 9.86839655 × 1016 3.36449547 × 10−5 9.94490915 × 1016

Max. 5.35494299 × 10−5 1.60091154 × 1017 5.86708958 × 10−5 1.46041394 × 1017 6.60254533 × 10−5 1.55122388 × 1017

Mean 2.10635962 × 10−5 8.81422848 × 1016 2.34063988 × 10−5 9.13247640 × 1016 2.65097147 × 10−5 9.17334058 × 1016

Standard deviation 7.56511156 × 10−6 1.31330873 × 1016 9.09743069 × 10−6 1.32619260 × 1016 9.36260749 × 10−6 1.32512543 × 1016

Coefficient of variance 3.59155744 × 10−1 1.48998716 × 10−1 3.88672806 × 10−1 1.45217194 × 10−1 3.53176471 × 10−1 1.44453966 × 10−1
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Figure 8: The dependence of the accuracy and conditioning of the method in the standard collocation (red curves) and least squares (green curves) modes on the
values of γ. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

oning, etc.), it tends to have less restrictions for the parameters
of nonlocal conditions (see also [24]).

An interesting topic for the future research could be the
comparison of the RBF methods and the methods based on tra-
ditional techniques (such as finite differences) applied for PDEs
with nonlocal boundary conditions. Also it would be useful to
investigate how successful the optimal shape parameter selec-
tion methods (e.g. [43–48]) can be in case of such nonclassical
problems.

It is well-known that the spectral properties of the matrices
arising after finite difference discretisation of nonlocal prob-
lems have significant influence on the applicability of the finite
difference methods. For example, the spectral structure of the
discretisation matrices affect the convergence of iterative meth-
ods for discrete problems solution [49]. An interesting and im-
portant question is how the spectral properties of the RBF collo-
cation matrices depend on the parameters of nonlocal boundary
conditions and how these properties influence the method.

In some sense, nonlocal multipoint boundary conditions can
be interpreted as special cases of nonlocal integral conditions.

Our preliminary investigation indicates that when dealing with
nonlocal conditions involving integration over an arbitrary mul-
tidimensional domain, additional problems related to the nu-
merical integration and ill-conditioning of the method can arise.
Definitely, these issues also deserve attention.

In the current paper and our previous studies [24, 26], we
applied the standard Kansa’s method for the solution of non-
local problems. However, there exists various different formu-
lations of the Kansa method [12]. It would be interesting to
investigate differences between these methods in the context of
nonlocal differential problems.
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[3] Čiupaila R, Sapagovas M, Štikonienė O. Numerical solution of nonlinear
elliptic equation with nonlocal condition. Nonlinear Anal Model Control
2013;18(4):412–26.

9



[4] Hazanee A, Lesnic D. Determination of a time-dependent coefficient in
the bioheat equation. Int J Mech Sci 2014;88:259–66. doi:10.1016/j.
ijmecsci.2014.05.017.

[5] Dı́az JI, Padial JF, Rakotoson JM. Mathematical treatment of the mag-
netic confinement in a current carrying stellarator. Nonlinear Anal
1998;34(6):857–87. doi:10.1016/S0362-546X(97)00563-4.

[6] Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T. Meshfree
methods. In: Stein E, de Borst R, Hughes TJR, editors. Encyclopedia
of computational mechanics; vol. 1: Fundamentals. 2004, p. 279–309.
doi:10.1002/0470091355.ecm005.

[7] Liu GR. Meshfree methods: moving beyond the finite element me-
thod. 2nd ed. Boca Raton, FL: CRC Press; 2009. doi:10.1201/
9781420082104.

[8] Li H, Mulay SS. Meshless methods and their numerical properties. Boca
Raton, FL: CRC Press; 2013. doi:10.1201/b14492.

[9] Buhmann MD. Radial basis functions: theory and implementations.
Cambridge monographs on applied and computational mathematics,
vol. 12. Cambridge: Cambridge University Press; 2003. doi:10.1017/
CBO9780511543241.

[10] Wendland H. Scattered data approximation. Cambridge monographs on
applied and computational mathematics, vol. 17. Cambridge: Cambridge
University Press; 2005. doi:10.1017/CBO9780511617539.

[11] Sarra SA, Kansa EJ. Multiquadric radial basis function approximation
methods for the numerical solution of partial differential equations. Ad-
vances in computational mechanics, Duluth, GA: Tech Science Press;
vol. 2. 2009.

[12] Chen W, Fu ZJ, Chen CS. Recent advances in radial basis function collo-
cation methods. Springer briefs in applied sciences and technology. Berlin
Heidelberg: Springer; 2014. doi:10.1007/978-3-642-39572-7.

[13] Fornberg B, Flyer N. Solving PDEs with radial basis functions. Acta
Numer 2015;24:215–58. doi:10.1017/S0962492914000130.

[14] Fornberg B, Flyer N. A primer on radial basis functions with applications
to the geosciences. CBMS-NSF regional conference series in applied
mathematics; SIAM; 2015. doi:10.1137/1.9781611974041.

[15] Dehghan M, Tatari M. Use of radial basis functions for solving the
second-order parabolic equation with nonlocal boundary conditions. Nu-
mer Methods Partial Differ Equ 2008;24(3):924–38. doi:10.1002/num.
20297.

[16] Dehghan M, Tatari M. On the solution of the non-local parabolic par-
tial differential equations via radial basis functions. Appl Math Model
2009;33(3):1729–38. doi:10.1016/j.apm.2008.03.006.

[17] Dehghan M, Shokri A. A meshless method for numerical solution of the
one-dimensional wave equation with an integral conditions using radial
basis functions. Numer Algorithm 2009;52(3):461–77. doi:10.1007/
s11075-009-9293-0.

[18] Kazem S, Rad JA. Radial basis functions method for solving of a
non-local boundary value problem with Neumann’s boundary conditions.
Appl Math Model 2012;36(6):2360–9. doi:10.1016/j.apm.2011.08.
032.

[19] Kadalbajoo MK, Kumar A, Tripathi LP. A radial basis functions based
finite differences method for wave equation with an integral condition.
Appl Math Comput 2015;235:8–16. doi:10.1016/j.amc.2014.12.
089.

[20] Yan L, Yang F. The method of approximate particular solutions for
the time-fractional diffusion equation with non-local boundary condition.
Comput Math Appl 2015;70(3):254–64. doi:10.1016/j.camwa.2015.
04.030.
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