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Abstract

Various real-world processes usually can be described by mathematical models consisted of partial differential equations (PDEs)
with nonlocal boundary conditions. Therefore, interest in developing computational methods for the solution of such nonclassical
differential problems has been growing fast. We use a meshless method based on radial basis functions (RBF) collocation technique
for the solution of two-dimensional Poisson equation with nonlocal boundary conditions. The main attention is paid to the influence
of nonlocal conditions on the optimal choice of the RBF shape parameters as well as their influence on the conditioning and accuracy
of the method. The results of numerical study are presented and discussed.
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1. Introduction

Nonlocal boundary conditions arise in mathematical models
of various physical, chemical, biological or environmental pro-
cesses. For example, we can mention various problems arising
in thermoelasticity, chemical diffusion or heat conduction pro-
cesses, population dynamics and control theory. Related refer-
ences and examples of mathematical models involving nonlocal
boundary conditions can be found, for example, in paper [1].

In this paper, we consider the two-dimensional Poisson equa-
tion

L[u] := −
∂2u
∂x2 −

∂2u
∂y2 = f (x, y), 0 < x < 1, 0 < y < 1, (1)

subject to classical Dirichlet boundary conditions

u(0, y) = µ1(y), 0 ≤ y ≤ 1, (2)
u(x, 0) = µ3(x), u(x, 1) = µ4(x), 0 ≤ x ≤ 1. (3)

Let us assume that on the boundary x = 1, a certain nonlocal
boundary condition is formulated instead of classical boundary
condition. In the present paper, we focus our attention on two
examples of nonlocal boundary conditions:
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• two-point condition

u(1, y) = γu(ξ, y) + µ2(y), 0 ≤ y ≤ 1, (4a)

• integral condition

u(1, y) = γ

∫ ξ2

ξ1

u(x, y)dx + µ2(y), 0 ≤ y ≤ 1. (4b)

Here f (x, y), µ1(y), µ2(y), µ3(x), µ4(x) are given functions, γ, ξ
(0 ≤ ξ < 1), ξ1, ξ2 (0 ≤ ξ1 < ξ2 ≤ 1) are given parameters
(real numbers), and function u(x, y) is unknown. We assume
that boundary conditions (2)–(4) are compatible on the corners
of the domain [0, 1]× [0, 1]. The parameter γ can be interpreted
as a measure of nonlocality. When γ = 0, we have a classi-
cal boundary-value problem, i.e., nonlocal boundary conditions
(4a) and (4b) coincide with classical Dirichlet boundary con-
dition u(1, y) = µ2(y). If γ , 0, then nonlocal condition (4a)
relates the values of unknown function on the boundary x = 1
with the values on the line x = ξ, and nonlocal integral con-
dition (4b) relates the values of unknown function on the same
boundary with the values on the interval [ξ1, ξ2] by the term of
definite integral respect to x.

In last decades, interest in developing numerical methods
for the solution of partial differential equations (PDEs) with
various types of nonlocal boundary conditions has been grow-
ing fast. Usually, finite difference, finite volume and finite el-
ement as well as various other traditional techniques are used
(see, e.g., [1–15]).
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In recent years, a lot of attention is paid to very attrac-
tive meshless (meshfree) methods for the numerical solution
of PDEs [16–18]. The main advantage of meshless methods
over the well-known mesh-based methods (such as finite dif-
ferences, finite volumes, finite elements, etc.) is their geomet-
rical flexibility. Meshless methods do not require mesh gen-
eration on the spatial domain of a problem. This advantage is
important since mesh generation and remeshing are very ex-
pensive parts of the solution procedure, especially for two- or
three-dimensional problems formulated on irregularly shaped
domains [19].

One class of meshless methods are radial basis functions
(RBF) collocation methods which use radial functions as the
basis functions for the collocation. RBF are very efficient tools
for the interpolation of a scattered multidimensional data as
well as for the numerical solution of PDEs [20–23].

The standard RBF methods are based on the global inter-
polation. Certain RBF with successfully selected shape param-
eters and the usage of arbitrary precision arithmetics allow to
achieve superior accuracy, even the exponential convergence
rate is possible [24, 25]. In case of methods based on the local
interpolation (such as finite element method), the convergence
rate can be no better than algebraic (polynomial), which is very
slow when high accuracy is necessary. The main disadvantage
of the standard RBF technique is such that we must deal with
dense (full) and, usually, ill-conditioned matrices. Neverthe-
less, in cases when accurate solutions of the problems formu-
lated on complexly shaped multidimensional domains are de-
sired, the RBF-based methods should be considered as useful
alternative to traditional techniques.

In 1990, Kansa first time used Hardy’s multiquadric (MQ)
RBF [26] for the numerical solution of PDEs [27, 28]. Since
then, RBF popularity in this area started to grow (see, e.g., [29–
47] and some other references in the present paper). However,
there are only few papers devoted to the RBF method for the so-
lution of PDEs with nonlocal conditions. Probably the first time
RBF method for the numerical solution of PDEs with nonlocal
boundary conditions was used in paper [48]. RBF technique
was tested for several problems with various types of nonlocal
integral conditions and the results were compared with those
obtained using the well-known finite difference schemes. In pa-
per [49], an efficient collocation method for solving parabolic
PDEs with nonlocal boundary conditions using RBF has been
suggested. The RBF-based method for the one-dimensional
wave equation with nonlocal integral condition has been pro-
posed in paper [50]. A simple meshless RBF method for the
solution of two-dimensional diffusion equation subject to Neu-
mann’s boundary conditions and nonlocal condition involving
a double integral in a rectangular domain has been constructed
in paper [51].

Above mentioned works [48–51] are mainly focused on de-
monstrating the efficiency of the RBF-based methods for the so-
lution of one- and two-dimensional parabolic equations or one-
dimensional hyperbolic (wave) equation with nonlocal bound-
ary conditions. However, such questions as the influence of
nonlocal boundary conditions on the optimal choice of the RBF
shape parameters and their influence on the conditioning of the

collocation matrix or the accuracy of the technique are not in-
vestigated yet.

The present paper is devoted to the RBF method for the so-
lution of two-dimensional differential problem (1)–(4). To the
best of our knowledge, this is the first time when RBF-based
meshless method is used to solve a steady-state PDE (the two-
dimensional Poisson equation) with nonlocal boundary condi-
tion. The main aim is to investigate the influence of nonlocal
boundary conditions on the optimal choice of the RBF shape
parameters as well as their influence on the conditioning and
accuracy of the method. We test standard asymmetric colloca-
tion technique based on various types of RBF.

The paper is organized as follows. In Section 2, the ba-
sic definitions are given and the RBF method for the consid-
ered differential problem (1)–(4) is formulated. The results of
numerical study (numerical experiments with several test prob-
lems) are presented and discussed in Section 3. Some remarks
in Section 4 conclude the paper.

2. Construction of the method

2.1. Basic definitions

Let us recall standard definition of radial function. A mul-
tivariate real-valued function Φ : Rd → R is called a radial
function if there exists a univariate function φ : [0,∞) → R
such that

Φ(x) = φ(‖x‖),

where ‖ · ‖ is some norm on Rd (usually the Euclidean norm is
used). Thus, the value Φ(x) depends only on the norm of vector
x.

In this paper, we will focus our attention on several types
of RBF. The most popular globally supported and infinitely
smooth RBF are listed in Table 1. All listed RBF contain a
free parameter ε > 0 which is called the shape parameter and
controls the shape of the function. Usually, the shape parameter
c = 1/ε is used in the expressions of RBF. Then, for example,
MQ RBF is generated by function φ defined as φ(r) =

√
c2 + r2.

Attention also will be paid to the generalized multiquadric
(GMQ) RBF

φ(r) = (1 + (εr)2)β,

where β is any real number except non-negative integers. The
shape of GMQ RBF is controlled by two parameters (the expo-
nent β and the shape parameter ε). It is clear that MQ, IMQ and
IQ RBF are special cases of GMQ RBF with β = 1/2, β = −1/2

Table 1: Globally supported and infinitely smooth RBF (r = ‖x‖).
RBF Definition
Multiquadric (MQ) φ(r) =

√
1 + (εr)2

Inverse Multiquadric (IMQ) φ(r) = (
√

1 + (εr)2)−1

Inverse Quadric (IQ) φ(r) = (1 + (εr)2)−1

Gaussian (GA) φ(r) = exp (−(εr)2)
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and β = −1, respectively. GMQ RBF is much less investigated
in comparison, for example, with MQ RBF.

When β < 0, GMQ RBF is strictly positive definite, while
with β > 0 it is only conditionally positive definite of order
dβe [21, 22]. Therefore, IMQ and IQ RBF are strictly positive
definite and MQ RBF is conditionally positive definite of order
one. GA RBF also is strictly positive definite. For interpola-
tion problem, the positive definiteness of RBF ensures the non-
singularity (invertibility) of the interpolation matrix [52]. In
case of conditionally positive definite RBF, the non-singularity
of the problem is ensured by augmenting the interpolant with a
polynomial of the corresponding order and appending some ad-
ditional homogeneous linear equations to the interpolation sys-
tem. Nevertheless, singular cases are very rare and interpolation
based on conditionally positive RBF and without any augmen-
tation of the interpolants are useful and efficient in practice.

For further theoretical details see, for example, [21, 22].

2.2. The method

When a meshless method is used for the solution of a steady-
state differential problem, the spatial domain and its boundary
are represented by a set of scattered points (nodes) [17]. In
case of the RBF method, nodes traditionally are called centers
(nodes coincide with the centers of RBF). Let

Ξ = {(xi, yi)}Ni=1 ⊂ [0, 1] × [0, 1]

be a set of distinct scattered nodes which represent the spatial
domain [0, 1]×[0, 1]. We assume that Ξ = Ξ1∪Ξ2∪Ξ3∪Ξ4∪Ξ5,
where

Ξ1 = {(xi, yi) ∈ Ξ : 0 < xi < 1, 0 < yi < 1},
Ξ2 = {(xi, yi) ∈ Ξ : xi = 0, 0 < yi < 1},
Ξ3 = {(xi, yi) ∈ Ξ : xi = 1, 0 < yi < 1},
Ξ4 = {(xi, yi) ∈ Ξ : 0 ≤ xi ≤ 1, yi = 0},
Ξ5 = {(xi, yi) ∈ Ξ : 0 ≤ xi ≤ 1, yi = 1},

and Ξl , ∅, l = 1, 2, 3, 4, 5.
Using the standard RBF interpolation approach, we seek for

an approximate solution to the problem (1)–(4) in the form

u(x, y) =

N∑
i=1

λiφi(x, y),

where φi(x, y) = φ(‖(x, y) − (xi, yi)‖2) for a given RBF φ and
center (xi, yi) ∈ Ξ, ‖ · ‖2 denotes the Euclidean norm, and λi are
coefficients to be determined using collocation technique.

Approximate solution u(x, t) imposed to satisfy the differen-
tial problem (1)–(4). Therefore, we have the following system

of linear collocation equations:

N∑
i=1

λiL[φi](x, y) = f (x, y), (x, y) ∈ Ξ1, (5)

N∑
i=1

λiφi(x, y) = µ1(y), (x, y) ∈ Ξ2, (6)

N∑
i=1

λi(φi(x, y) − γIi(y)) = µ2(y), (x, y) ∈ Ξ3, (7)

N∑
i=1

λiφi(x, y) = µ3(x), (x, y) ∈ Ξ4, (8)

N∑
i=1

λiφi(x, y) = µ4(x), (x, y) ∈ Ξ5, (9)

where

Ii(y) = φi(ξ, y) or Ii(y) =

∫ ξ2

ξ1

φi(x, y)dx

correspond to nonlocal parts of conditions (4a) or (4b), respec-
tively.

For the functions φ listed in Table 1, computing of Ii(y) is
not complicated both in cases of conditions (4a) and (4b). Even
in case of integral condition (4b), numerical integration is not
required. Expressions of integrated (with respect to x) functions
Φ(x, y) = φ(‖(x, y)‖2) are listed in Table 2. When GMQ RBF are
used, nonlocal parts of conditions (4a) and (4b) are expressed
as

Ii(y) = [1 + ε2((ξ − xi)2 + (y − yi)2)]β

and

Ii(y) =

∫ ξ2

ξ1

[1 + ε2((x − xi)2 + (y − yi)2)]βdx, (10)

respectively. According to Chebyshev theorem on the integra-
tion of binomial differentials, the indefinite integral of GMQ
RBF (a special case of the binomial differential) with respect to
x cannot be expressed in terms of elementary functions for any
rational β, except in the cases where β or β + 1/2 is an integer.
Therefore, in order to compute the integrals (10), usually it is
necessary to apply a numerical integration procedure. In case
of more general nonlocal boundary condition, such as

u(1, y) =

∫ ξ2

ξ1

γ(x)u(x, y)dx + µ2(y), 0 ≤ y ≤ 1,

where γ(x) is given function, in order to compute the values

Ii(y) =

∫ ξ2

ξ1

γ(x)φi(x, y)dx,

numerical integration might be necessary even MQ, IMQ, IQ
or GA RBF are used. It is possible to get explicit expressions
of Ii(y) for polynomial functions γ(x) (this can be easily done
using a computer algebra system).
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Table 2: Expressions of integrated (with respect to x) functions Φ(x, y) = φ(r)
(r = ‖(x, y)‖2).

RBF Integrated function

Multiquadric (MQ)
1
2

(
x
√

1 + (εr)2 +
1 + (εy)2

ε
· ln (εx +

√
1 + (εr)2)

)
Inverse Multiquadric (IMQ)

1
ε

ln (εx +
√

1 + (εr)2)

Inverse Quadric (IQ)
1

ε
√

1 + (εy)2
arctan

( εx√
1 + (εy)2

)
Gaussian (GA)

√
π

2ε
erf (εx) exp (−(εy)2)

Thus, in order to determine unknown coefficients λi, we
need to solve the linear system (5)–(9) which can be written
in the matrix form as

Aλ = b (11)

where λ = (λ1, λ2, . . . , λN)T is unknown vector and b consists of
the right-hand sides of linear equations (5)–(9). If globally sup-
ported RBF are used, then the matrix A is dense (full). More-
over, it tends to be very ill-conditioned when the shape param-
eter ε → 0 (and the exponent β is fixed, in case of GMQ RBF).
The shape parameter ε also controls the accuracy of the method.
In order to get accurate results, a small value of the shape pa-
rameter ε is required. Consequently, the method cannot be well-
conditioned and very accurate at the same time. This is known
as uncertainty (or trade-off) principle [22, 53].

We use the standard formulation of the RBF method. How-
ever, it is possible to use various approaches for the purpose of
improving the method. For example, we can mention various
techniques for improving the conditioning and accuracy of the
MQ RBF asymmetric collocation method for elliptic PDEs [54],
collocation both the boundary condition and PDE at the bound-
ary points [55], Contour-Padé algorithm [56], usage of inte-
grated MQ RBF [57] and a variable shape parameter (a differ-
ent value of the shape parameter ε at each center) [27, 58, 59],
RBF-QR method [60]. In order to get clear understanding about
the influence of nonlocal boundary conditions on the properties
of the method, none of these improvements were used in our
study.

3. Numerical study

3.1. Technical details
In order to demonstrate the efficiency of the considered nu-

merical method and investigate the influence of nonlocal bound-
ary conditions on various properties of the method, several test
problems were analyzed. In this paper, we present the results of
numerical experiments with three test examples. In our exam-
ples, functions f (x, y), µ1(y), µ2(y) and µ3(x), µ4(x) (initial data)
were chosen so that particular functions u(x, y) would be solu-
tions to the differential problem (1)–(4). All these functions are
listed in Table 3 and the graphs of functions u(x, y) are plotted
in Fig. 1.

On the problem domain, the nodes (centers of RBF) were
distributed uniformly (see Fig. 2). Set Ξ consisted of (

√
N−2)2

interior nodes (|Ξ1| = (
√

N − 2)2) and 4(
√

N − 1) nodes located
on the boundary (|Ξ2| = |Ξ3| =

√
N − 2, |Ξ4| = |Ξ5| =

√
N).

Table 3: The exact solutions and initial data of the test examples.

Test 1
u(x, y) exp (x + y)
f (x, y) −2 exp (x + y)
µ1(y) exp (y)
µ2(y) [(4a)] exp (1 + y) − γ exp (ξ + y)
µ2(y) [(4b)] exp (1 + y) − γ(− exp (ξ1 + y) + exp (ξ2 + y))
µ3(x) exp (x)
µ4(x) exp (x + 1)

Test 2
u(x, y) cos (πx) cos (πy)
f (x, y) 2π2 cos (πx) cos (πy)
µ1(y) cos (πy)
µ2(y) [(4a)] − cos (πy) − γ cos (πξ) cos (πy)
µ2(y) [(4b)] − cos (πy) + γ cos (πy)(sin (πξ1) − sin (πξ2))/π
µ3(x) cos (πx)
µ4(x) − cos (πx)

Test 3
u(x, y) sin (πx) sin (πy)
f (x, y) 2π2 sin (πx) sin (πy)
µ1(y) 0
µ2(y) [(4a)] −γ sin (πξ) sin (πy)
µ2(y) [(4b)] −γ sin (πy)(cos (πξ1) − cos (πξ2))/π
µ3(x) 0
µ4(x) 0

The examined meshless method has been implemented us-
ing Python programming language [61]. In case of GMQ RBF,
the values of integrals (10) were computed using general pur-
pose integration routine quad from SciPy subpackage integrate.
Routine quad uses a technique (adaptive quadrature) from the
Fortran library QUADPACK [62]. Linear systems (11) were
solved using standard routine solve from SciPy subpackage
linalg. SciPy package is built using the optimized ATLAS
LAPACK and BLAS libraries [62]. The condition number of
the matrix A was evaluated as the ratio of the largest and small-
est singular values of A,

κ(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
.

This ratio was computed using standard routines from SciPy
package.

To estimate the accuracy of the numerical solution, we com-
puted the max error

E∞ = max
i=1,2,...,N

|u(xi, yi) − u(xi, yi)|,

and the root mean square (RMS) error

ERMS =

√√√
1
N

N∑
i=1

(u(xi, yi) − u(xi, yi))2.

Additional technical details of the numerical experiments
will be specified later.

3.2. Results and discussion

3.2.1. Optimized values of the RBF shape parameters
Many popular RBF such as MQ, IMQ, IQ and GA contain

a free parameter which controls the shape of the function. This
parameter also has a strong influence on the conditioning and
accuracy of the method. From Figs. 3 and 4 we can see how the
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Figure 2: Representation of the domain [0, 1] × [0, 1] by uniformly distributed
nodes (N = 100). Nodes from sets Ξ1, Ξ2, Ξ3, Ξ4 and Ξ5 are marked as bullets
(•), right-triangles (I), left-triangles (J), up-triangles (N) and down-triangles
(H), respectively.

conditioning and accuracy of the method depend on the values
of the shape parameter ε when MQ RBF are used for the so-
lution of the problem (1)–(4) with particular values of γ, ξ or
ξ1 and ξ2. The minimal values of the errors E∞ and ERMS in
all three cases are unstable (it is difficult to identify the optimal
values of the shape parameter ε exactly). The region of such
values of the shape parameter which lead to quite accurate re-
sults is limited. In case of each particular RBF and distribution
of the nodes, the condition number of the matrix A depends on
the shape parameter and the parameter γ of nonlocal boundary
condition. We see that the method become ill-conditioned and
lose its accuracy if the shape parameter is selected improperly.
Thus, the selection of such value of the shape parameter which
gives the most accurate results is very important and, unfortu-
nately, very difficult problem.

The shape of GMQ RBF, as well as the conditioning and
accuracy of the corresponding method, is controlled by the pa-
rameters β and ε. From Figs. 5 and 6 we see how the condi-
tioning and accuracy of the method depend on the values of
the exponent β when GMQ RBF with several different values
of the shape parameter ε are used for the solution of the prob-
lem (1)–(4) with particular parameters of nonlocal condition. It
is difficult to identify exactly which values of β give the most
accurate results.

The first two ad hoc criteria for ”optimal” shape param-
eter selection were proposed by Hardy [26] and Franke [63].
Rippa [64] suggested to use the leave-one-out cross validation
(LOOCV) algorithm, which was extended by Fasshauer and
Zhang [65] more recently. Various other strategies also have
been suggested (for example, see [66–68]).

Recently, the problem of the optimal choice of the RBF
shape parameters still remains very important and open. In
paper [69], the influence of the shape parameter in the Gaus-

sian radial basis function finite difference (RBF-FD) method
with irregular centers on the quality of the approximation of the
Dirichlet problem for the Poisson equation with smooth solu-
tion has been investigated and a multilevel algorithm that effec-
tively finds a near-optimal shape parameter has been suggested.
A novel algorithm for the shape parameter selection, based on a
convergence analysis, is presented in paper [70]. Some results
on the influence of the shape parameter in the error estimate of
Gaussian interpolation have been obtained in paper [71]. An in-
teresting numerical study exhibiting the role of the GMQ RBF
shape parameters for the solution of elliptic PDEs is presented
in paper [72]. In papers [73–75], various theoretical conjectures
are explored using arbitrary precision computation. Finally, it
should be noted that, in order to optimize the shape parameter,
the residual error can be used as an error indicator [76].

For testing purposes, when the exact solution of the prob-
lem is known, trial and error method for the optimization of the
shape parameters can be quite efficient. We used this technique
when investigated the influence of nonlocal boundary condi-
tions on the optimal values of the RBF shape parameters. For
each test problem, we examined our method with values of the
shape parameter ε (in case of MQ, IMQ, IQ and GA RBF) or
the parameters β and ε (in case of GMQ RBF) obtained from
random samples. In numerical experiments with MQ, IMQ, IQ
and GA RBF, each sample consisted of 1000 random numbers
uniformly distributed on the interval (0, 10.0]. When examined
the method based on GMQ RBF, we used samples consisted of
10 000 pairs (β, ε), where β and ε were random numbers uni-
formly distributed on the intervals (−10.0, 10.0] and (0.0, 10.0],
respectively. The values of the shape parameters which give
the most accurate results for a fixed distribution and number of
centers are assumed to be the optimized (near-optimal).

First of all, we investigated how the optimized values of the
shape parameters depend on the values of γ. The values of γ
were taken from samples of random numbers uniformly dis-
tributed on the interval [−100.0, 100.0) (each sample consisted
of 2000 random numbers). The values of parameter ξ (in case
of condition (4a)) or parameters ξ1 and ξ2 (in case of condition
(4b)) as well as the number of centers N were fixed.

The means and coefficients of variation (ratios of the stan-
dard deviations to the means, CV) of the optimized MQ, IMQ,
IQ and GA RBF shape parameter ε are presented in Table 4.
In case of Test 1, the coefficients of variation are smaller or
approximately equal to 0.1. Slightly higher variances are ob-
servable in Test 2 and Test 3. In case of Test 3, the coefficients
of variation are greater than 0.2 for both cases of nonlocal con-
ditions (4a) and (4b). Nevertheless, all the coefficients of vari-
ation are greatly less than 1, i.e., variances are low. Thus, in all
considered cases the variability of the optimized values of the
shape parameter ε respect to the values of γ is low.

Since the optimized values of the exponent β can be both
positive and negative, the variability of the optimized values of
the GMQ RBF shape parameters is measured using the standard
deviation (SD). From Table 5 we see that the variability of the
optimized values of the parameter β is high, especially in cases
of Test 2 and Test 3. In case of Test 3, the averaged optimized
values of the parameter β are negative.
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Figure 1: Plots of the exact solutions u(x, y) of the test examples.

Figure 3: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves and green curves, respectively) and the condition number
κ(A) (all three graphs in the second line represent the same data) on the values of MQ RBF shape parameter ε: problem with nonlocal boundary condition (4a),
γ = 1.0, ξ = 0.5, N = 100. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Figure 4: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves and green curves, respectively) and the condition number
κ(A) (all three graphs in the second line represent the same data) on the values of MQ RBF shape parameter ε: problem with nonlocal condition (4b), γ = 1.0,
ξ1 = 0.0, ξ2 = 1.0, N = 100. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Figure 5: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as solid curves and dashed curves, respectively) and the condition
number κ(A) (all three graphs in the second line represent the same data) on the values of the GMQ RBF parameter β: problem with nonlocal boundary condition
(4a), γ = 1.0, ξ = 0.5, ε = 0.5 (red lines), ε = 1.0 (green lines), ε = 1.5 (blue lines), N = 100. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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Figure 6: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as solid curves and dashed curves, respectively) and the condition
number κ(A) (all three graphs in the second line represent the same data) on the values of the GMQ RBF parameter β: problem with nonlocal boundary condition
(4b), γ = 1.0, ξ1 = 0.0, ξ2 = 1.0, ε = 0.5 (red lines), ε = 1.0 (green lines), ε = 1.5 (blue lines), N = 100. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

Table 4: Means and coefficients of variation of the optimized values of the MQ, IMQ, IQ and GA RBF shape parameter ε: ξ or ξ1 and ξ2 were fixed (ξ = 0.5 or
ξ1 = 0.0 and ξ2 = 1.0), γ was taken from random samples, N = 100.

MQ IMQ IQ GA

Problem with nonlocal condition (4a)
Test 1
Min. E∞ Mean 0.570948630707 0.434771119978 0.382037142193 0.774627630899

CV 0.0857715217498 0.0842158864327 0.0968117334031 0.0923498422023
Min. ERMS Mean 0.572668648953 0.438794384611 0.385113021877 0.774722196781

CV 0.0812766278521 0.082311949162 0.0921473442284 0.0863009864895
Test 2
Min. E∞ Mean 0.561844192351 0.519610104984 0.498482220599 1.20223542971

CV 0.223356264589 0.239076730354 0.174628962207 0.0792320204078
Min. ERMS Mean 0.557606978885 0.520756514295 0.499646599682 1.21031640864

CV 0.0897045515829 0.248672728036 0.169912646503 0.0717629637452
Test 3
Min. E∞ Mean 0.868731949771 0.707721121403 0.604651229144 1.03141068628

CV 0.216831126855 0.285044802302 0.350472114772 0.261856791374
Min. ERMS Mean 0.863977270991 0.697756478368 0.591685855475 1.01866706478

CV 0.221754216432 0.29516637622 0.360156839901 0.252803761724

Problem with nonlocal condition (4b)
Test 1
Min. E∞ Mean 0.566374305499 0.445553885934 0.380367358006 0.775173935504

CV 0.0920678790775 0.0952778466654 0.100472230068 0.0949217059922
Min. ERMS Mean 0.569904069897 0.44915912783 0.383872160877 0.777298401682

CV 0.0858438738256 0.0886332514393 0.0952858361182 0.0864950530324
Test 2
Min. E∞ Mean 0.565751987365 0.525277979221 0.49698715429 1.20140806046

CV 0.224332906615 0.250849827133 0.11365465002 0.0861426219789
Min. ERMS Mean 0.559963698542 0.518930339289 0.495791021342 1.20375360355

CV 0.090152094309 0.193513434273 0.109725795822 0.0771095409975
Test 3
Min. E∞ Mean 0.852251891852 0.72189901672 0.622993148112 1.06962912608

CV 0.228313188184 0.262292522147 0.33165204197 0.279203965992
Min. ERMS Mean 0.850522282652 0.700611768727 0.603679742388 1.03990304786

CV 0.233023886909 0.286613430494 0.347877101132 0.26644028703
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Table 5: Means and standard deviations of the optimized values of the GMQ RBF shape parameters β and ε: ξ or ξ1 and ξ2 were fixed (ξ = 0.5 or ξ1 = 0.0 and
ξ2 = 1.0), γ was taken from random samples, N = 100.

β ε

Problem with nonlocal boundary condition (4a)
Test 1
Min. E∞ Mean 5.06903291227 0.597918707732

SD 1.03144393384 0.29868056132
Min. ERMS Mean 4.94159242959 0.637608347473

SD 0.878243700011 0.365721353381
Test 2
Min. E∞ Mean 3.87493708756 1.76769037639

SD 3.78366858407 0.723917669832
Min. ERMS Mean 2.94598010763 1.59338189686

SD 4.59455893161 0.658539913348
Test 3
Min. E∞ Mean −3.04409551436 0.483585764739

SD 5.79361332398 0.223979081057
Min. ERMS Mean −2.97450622269 0.489652384922

SD 5.92527015107 0.218338808473

Problem with nonlocal boundary condition (4b)
Test 1
Min. E∞ Mean 4.94484099131 0.624647511577

SD 0.804553650398 0.35386338254
Min. ERMS Mean 4.78945512753 0.679743673747

SD 0.641447774178 0.409613199312
Test 2
Min. E∞ Mean 1.78600867657 1.41977498537

SD 5.28101345705 0.706705494109
Min. ERMS Mean 0.781098331798 1.27079175584

SD 5.60118553927 0.716372843041
Test 3
Min. E∞ Mean −4.78775187572 0.507411216368

SD 4.34188956112 0.168041524057
Min. ERMS Mean −4.70683133432 0.517554226246

SD 4.41030596905 0.164158949495

The influence of the location of parameter ξ or parameters
ξ1 and ξ2 on the optimal selection of the shape parameters was
also investigated. The value of γ was fixed while the values
of parameter ξ or parameters ξ1 and ξ2 (ξ1 < ξ2) were taken
from random samples (each sample consisted of 1000 random
numbers uniformly distributed on the unit interval). For each
particular value of ξ or pair (ξ1, ξ2), the above described trial
and error procedure of the shape parameters optimization was
executed.

The results obtained using MQ, IMQ, IQ and GA RBF are
presented in Table 6. We see that variances are low in all con-
sidered cases. In cases of Test 1 and Test 2, the coefficients
of variation are less than 0.1 while in case of Test 3 these co-
efficients are only slightly greater. Overall, the coefficients of
variation are greatly less than 1, i.e., the variability of the opti-
mized values of the RBF shape parameter ε respect to the values
of ξ or ξ1 and ξ2 also is low.

However, from Table 7 we see that in case of Test 2 the
variability of the optimized values of the exponent β in GMQ
RBF respect to the values of ξ or ξ1 and ξ2 is high. The averaged
optimized values of the parameter β are negative in cases of
Test 2 and Test 3.

It should be noted that the optimal values of the shape pa-
rameters depend on the problem and on a total number of cen-
ters N. From Figs. 7 and 8 we see how the optimized values
of the MQ, IMQ, IQ or GA RBF shape parameter ε depend on
the number of centers N. It is known that the optimal values of
the shape parameter ε also depend on the distribution of centers
and on the precision of the computation [64].

From the results presented in the next subsection we will
see that if the optimized (near-optimal) values of the shape pa-
rameters are used, the accuracy of the results is quite high in all
considered cases.

3.2.2. Conditioning and accuracy of the method
The matrix of linear system (11) tends to be ill-conditioned

if the shape parameter ε is decreased. Therefore, it could be
difficult to obtain accurate solution of the linear system. To
overcome this challenge, various approaches have been sug-
gested (see, e.g., [19, 54, 77]). Recently, through numerical
experiments, the condition numbers of the interpolation matrix
for many species of RBF were examined in paper [78].

We investigated the influence of nonlocal conditions on the
condition number of the collocation matrix A and the accuracy
of the method. We solved differential problems with different
values of γ, evaluated the condition number of the matrix A and
computed the max and RMS errors. The number of centers was
fixed (N = 100) and the averaged optimized values of the RBF
shape parameter ε (see Table 4) were used.

The results of computations using MQ RBF are presented in
Figs. 9 and 10. We note that in spite of high condition numbers,
the accuracy of the method in cases of Test 1 and Test 2 is quite
good. In case of Test 3, the values of the condition number κ(A)
are small, however, the max and RMS errors for certain values
of γ are quite large. As we noted before, in comparison with
first two examples, the problem of Test 3 demonstrates strong
variability of the optimized values of the shape parameter ε re-
spect to the values of γ (Table 4).
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Table 6: Means and coefficients of variation of the optimized values of the MQ, IMQ, IQ and GA RBF shape parameter ε: γ was fixed (γ = 1.0), ξ or ξ1 and ξ2 were
taken from random samples, N = 100.

MQ IMQ IQ GA

Problem with nonlocal condition (4a)
Test 1
Min. E∞ Mean 0.546315913425 0.430805823852 0.37744328393 0.770526981203

CV 0.0813345033203 0.0735449437812 0.0818600756345 0.0712298555533
Min. ERMS Mean 0.549479175927 0.431488028105 0.374954301061 0.747806248518

CV 0.0779898974776 0.0743398400816 0.0803129755423 0.0647381252444
Test 2
Min. E∞ Mean 0.557503096986 0.516184931745 0.494956574381 1.21013053465

CV 0.0770892746382 0.0517109472666 0.0464156197119 0.0199851228971
Min. ERMS Mean 0.558237874475 0.515593128694 0.495047086093 1.21249147426

CV 0.0733901224165 0.0493699515919 0.0419489450382 0.0136891523163
Test 3
Min. E∞ Mean 0.87400434316 0.735345020775 0.629827256392 1.09668998936

CV 0.203416588257 0.248985879667 0.323968263188 0.278191017196
Min. ERMS Mean 0.894950486667 0.711787791062 0.608660206287 1.04322442346

CV 0.175515453781 0.278404586758 0.345538221098 0.262123943869

Problem with nonlocal condition (4b)
Test 1
Min. E∞ Mean 0.547136960242 0.438461947242 0.37962472074 0.772480247923

CV 0.0746507354983 0.0698962864618 0.0771201878261 0.0665456191321
Min. ERMS Mean 0.550950771558 0.437961637591 0.376241910714 0.749049259659

CV 0.0727763106942 0.0662558304426 0.0761213209769 0.0637995571199
Test 2
Min. E∞ Mean 0.557234119818 0.516942330103 0.496838602999 1.20885970449

CV 0.0804345786922 0.0528399287151 0.0444560188269 0.0236451902772
Min. ERMS Mean 0.559418143701 0.515536562689 0.496502902629 1.21242583379

CV 0.0764892165455 0.0511041522461 0.0389659761057 0.0184332342373
Test 3
Min. E∞ Mean 0.877019139707 0.748647620942 0.645691834258 1.1364721472

CV 0.198945039601 0.231401266138 0.30645410661 0.284531300503
Min. ERMS Mean 0.895240846084 0.721724355743 0.620950163321 1.06765376724

CV 0.175135972162 0.26579208727 0.333327016418 0.272166898969

Table 7: Means and standard deviations of the optimized values of the GMQ RBF shape parameters β and ε: γ was fixed (γ = 1.0), ξ or ξ1 and ξ2 were taken from
random samples, N = 100.

β ε

Problem with nonlocal boundary condition (4a)
Test 1
Min. E∞ Mean 4.74456142802 0.624060484189

SD 0.643796991784 0.199256856155
Min. ERMS Mean 4.84710145234 0.620347236419

SD 0.685950413933 0.211737204314
Test 2
Min. E∞ Mean −3.28316894379 0.744930098952

SD 5.18752008151 0.648254143848
Min. ERMS Mean −3.16305711488 0.749839271765

SD 5.23217756706 0.637418004851
Test 3
Min. E∞ Mean −6.13802710428 0.458521728453

SD 2.92272727451 0.158001220648
Min. ERMS Mean −5.67893121195 0.451279541776

SD 3.67700265351 0.177729926948

Problem with nonlocal boundary condition (4b)
Test 1
Min. E∞ Mean 4.70110441745 0.676268075106

SD 0.631275189647 0.46894454569
Min. ERMS Mean 4.76018747229 0.651178575857

SD 0.588448225975 0.369929183922
Test 2
Min. E∞ Mean −2.50161509216 0.873165704983

SD 5.626083594 0.718394281761
Min. ERMS Mean −2.44591306921 0.865575438129

SD 5.59699161737 0.702588376198
Test 3
Min. E∞ Mean −6.13835049697 0.486864891083

SD 2.70866487459 0.145758892753
Min. ERMS Mean −5.7324111019 0.468138518305

SD 3.50240080884 0.17492244483
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Figure 7: The dependence of the optimized values of the shape parameters on the number of centers N (centers are distributed uniformly): problem with nonlocal
condition (4a), γ = 1.0, ξ = 0.5. The values of the shape parameter which minimize errors E∞ and ERMS are depicted as red curves with stars and green curves with
bullets, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Figure 8: The dependence of the optimized values of the shape parameters on the number of centers N (centers are distributed uniformly): problem with nonlocal
condition (4b), γ = 1.0, ξ1 = 0.0, ξ2 = 1.0. The values of the shape parameter which minimize errors E∞ and ERMS are depicted as red curves with stars and green
curves with bullets, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Figure 9: The dependence of the accuracy of the method and the condition number κ(A) on the values of γ (red and green curves represent the data obtained using
the values of the shape parameter ε minimizing errors E∞ and ERMS, respectively): problem with nonlocal boundary condition (4a), ξ = 0.5; MQ RBF with the
averaged optimized values of the shape parameter ε (Table 4) were used, N = 100. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Figure 10: The dependence of the accuracy of the method and the condition number κ(A) on the values of γ (red and green curves represent the data obtained using
the values of the shape parameter ε minimizing errors E∞ and ERMS, respectively): problem with nonlocal boundary condition (4b), ξ1 = 0.0, ξ2 = 1.0; MQ RBF
with the averaged optimized values of the shape parameter ε (Table 4) were used, N = 100. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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We also investigated how the conditioning and accuracy of
the method depend on γ when the value of the shape parameter
ε is fixed (ε = 1.0). From the results obtained using MQ RBF
and presented in Figs. 11 and 12 we see that the minimal values
of the condition number κ(A) arise with certain small positive
values of γ. However, in general we note that when the value
of |γ| increases, the condition number also tends to increase.

In certain ranges of the values of γ, the spikes of the errors
E∞ and ERMS are observable (see Figs. 11 and 12, and the re-
sults related with Test 3 in Figs. 9 and 10). From additional
numerical experiments (the results are not presented here) we
know that similar phenomena appear when other types of RBF
are used (in case of GA RBF, the spikes are not very sharp).
This issue needs further investigation.

The approximate solutions u(x, y) obtained using MQ, IMQ,
IQ or GA RBF are accurate not only on the collocation points
but also in the whole domain [0, 1] × [0, 1]. In Figs. 13 and 14
we present the absolute errors |u(x, y) − u(x, y)|, when approxi-
mate solutions u(x, y) of the problems are obtained using MQ,
IMQ, IQ and GA RBF (the values of parameters in nonlocal
conditions and the shape parameter ε are fixed).

From Figs. 15 and 16 we can see that when a total number
of centers N grows, the accuracy of the method remains more
or less stable (Test 1 and Test 2) or can be slightly increased
(Test 3). The accuracy of the RBF technique can be increased
significantly if extended precision floating point arithmetic is
used for the computation [79].

4. Concluding remarks

The meshless method based on the RBF collocation tech-
nique for the solution of two-dimensional Poisson equation with
nonlocal boundary condition was examined. We can formulate
the following conclusions and remarks:

• As it is known, the conditioning and accuracy of the stan-
dard RBF-based meshless methods depends on the values
of the RBF shape parameters (Figs. 3–6). In all the cases
we analyzed, the variability of the optimized values of the
shape parameter ε in MQ, IMQ, IQ and GA RBF respect to
the values of γ or to the values of ξ or ξ1 and ξ2 is low (Ta-
bles 4 and 6). Discussed technique can give quite accurate
results if averaged optimized values of the shape parameter
are used (Figs. 9 and 10). More accurate results can be ob-
tained if optimal or at least optimized (near-optimal) values
of the shape parameter are used (Figs. 15 and 16). An effi-
cient strategy for choosing optimal (near-optimal) value of
the shape parameter would be very useful. Unfortunately,
the optimal selection of the shape parameter depends on the
problem and on the number of centers (Figs. 7 and 8). The
closed-form approximate solution is accurate not only on the
collocation points but also on the whole domain of the prob-
lem (Figs. 13 and 14).

• The variability of the optimized values of GMQ RBF pa-
rameters β and ε respect to the values of γ or to the values
of ξ or ξ1 and ξ2 is high (Tables 5 and 7). In such cases,
the accuracy of the results obtained using method with the

averaged optimized values of the shape parameters can be
poor. Therefore, while efficient strategy of the selection of
the optimal values of the shape parameters is unknown, ap-
plication of GMQ RBF for the numerical solution of similar
differential problems can be complicated.

• In comparison with classical case (γ = 0), nonlocal bound-
ary conditions can increase the condition number of the col-
location matrix (Figs. 11 and 12). To avoid difficulties caused
by this property of the method, a suitable stabilized linear
solver or an efficient preconditioning technique can be used.
This issue also seems to be sensitive to the precision of ma-
chine arithmetics.

It is important to note that these conclusions have been made
from the results of numerical experiments with particular ex-
amples of the differential problem (1)–(4).

Numerical studies presented in the present and previous pa-
pers [48–51] demonstrate that the RBF-based meshless meth-
ods for the numerical solution of PDEs with nonlocal bound-
ary conditions are promising. The RBF collocation technique
can be successfully applied for the solution of the problems
with various types of nonlocal boundary conditions. Moreover,
this technique can be extended to multidimensional cases when
the problems are formulated on irregularly shaped domains (for
example of multidimensional steady-state differential problem
with nonlocal boundary conditions see [80]). However, a lot of
important practical and fundamental questions (such as the op-
timal selection of the shape parameters or the influence of non-
local conditions on the invertibility of the collocation matrix)
are still open. It is necessary to develop mathematical tools that
are needed in order those questions to be answered.

The usage of the RBF-based meshless methods for time-
dependent PDEs leads to additional interesting questions, for
example, related with the time marching. The similar anal-
ysis of such methods for time-dependent PDEs with nonlocal
boundary conditions also would be interesting.
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Figure 11: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves and green curves, respectively) and the condition number
κ(A) (all three graphs in the second line represent the same data) on the values of γ: problem with nonlocal boundary condition (4a), ξ = 0.5; MQ RBF with ε = 1.0
were used, N = 100. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Figure 12: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves and green curves, respectively) and the condition number
κ(A) (all three graphs in the second line represent the same data) on the values of γ: problem with nonlocal boundary condition (4b), ξ1 = 0.0, ξ2 = 1.0; MQ RBF
with ε = 1.0 were used, N = 100. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Figure 13: The absolute errors |u(x, y) − u(x, y)|: problem with nonlocal boundary condition (4a), γ = 1.0, ξ = 0.5, ε = 1.0, N = 100.
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Figure 14: The absolute errors |u(x, y) − u(x, y)|: problem with nonlocal boundary condition (4b), γ = 1.0, ξ1 = 0.0, ξ2 = 1.0, ε = 1.0, N = 100.
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Figure 15: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves with stars and green curves with bullets, respectively) on
the number of centers N (centers are distributed uniformly): problem with nonlocal boundary condition (4a), γ = 1.0, ξ = 0.5; RBF with optimized values of the
shape parameters (see Fig. 7) were used. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Figure 16: The dependence of the accuracy of the method (errors E∞ and ERMS are depicted as red curves with stars and green curves with bullets, respectively)
on the number of centers N (centers are distributed uniformly): problem with nonlocal boundary condition (4b), γ = 1.0, ξ1 = 0.0, ξ2 = 1.0; RBF with optimized
values of the shape parameters (see Fig. 8) were used. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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