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aDepartment of Applied Mathematics, Institute of Fundamental Physics and Mathematics, Universidad de Salamanca,
Salamanca, Spain

bDepartment of Software Engineering, Faculty of Informatics, Kaunas University of Technology, Studentu str. 50,
LT-51368 Kaunas, Lithuania

Abstract

In this paper, the two-level finite difference schemes for the one-dimensional heat equation with a nonlocal
initial condition are analyzed. As the main result, we obtain conditions for the numerical stability of the
schemes. In addition, we revise the stability conditions obtained in [21] for the Crank–Nicolson scheme.
We present several numerical examples that confirm the theoretical results within linear, as well as nonlinear
problems. In some particular cases, it is shown that for small regions of the time step size values, the explicit
FTCS scheme is stable while certain implicit methods, such as Crank–Nicolson scheme, are not.
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1. Introduction

Mathematical models arising in various fields of science and engineering very often are expressed in
terms of partial differential equations (PDEs) with nonlocal initial or boundary conditions. For example, we
can mention models arising in thermoelasticity [1], thermodynamics [2], geology [3], hydrodynamics [4],
biological fluid dynamics [5] or plasma physics [6]. The present paper is focused on differential problems
with nonlocal initial conditions. Such problems generalize the classical or time-periodic problems and can
be seen as the control problems with initial conditions.

Nonclassical problems with nonlocal initial conditions are important because of their practical applica-
tions in modeling and investigation of sewage caused pollution processes in rivers and seas. Such problems
are also used when investigating radionuclides propagation in Stokes fluid, diffusion and flow in porous
media [7–9]. Nonlocal initial conditions also arise in mathematical models applied in meteorology since
the use of time-averaged data instead of the initial data only leads to more reliable long-term weather fore-
casts [10].

In this paper, as a model problem we consider the one-dimensional parabolic (heat) equation

∂u
∂t
−
∂2u
∂x2 = f (x, t), (x, t) ∈ Ω × (0,T ), (1)
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subject to homogeneous boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ), (2)

and nonlocal discrete–integral initial condition

u(x, 0) =

m∑
j=1

α ju(x,T j) +

∫ T

0
υ(τ)u(x, τ)dτ + ϕ(x), x ∈ Ω. (3)

Here Ω = (0, L) is a spatial interval, α j , 0, 0 < T j ≤ T (1 ≤ j ≤ m), υ ∈ L1(0,T ).
Nonlocal in time problems for parabolic equations were considered in [11] and, later, in [7–9, 12–14]

(see also references therein). The solvability of various differential problems with nonlocal initial conditions
systematically has been studied in papers [15–18].

The existence and uniqueness results related to the problem (1)–(3) are given in paper [17]. If ϕ ∈ L2(Ω),
f ∈ L2([0,T ]; H−1(Ω)) and

1 −
m∑

j=1

α j + |α j|

2
≥

∫ T

0
|υ(τ)|dτ,

then the problem (1)–(3) has a unique solution u ∈ C0([0,T ]; L2(Ω)) ∩ L2([0,T ]; H1
0(Ω)).

In recent decades, numerical methods for the solution of PDEs with nonlocal boundary conditions
are developed and investigated very actively. However, only a few studies are related to the numerical
solution of PDEs with nonlocal initial conditions. For example, the error estimates for the semidiscrete
finite element approximation of the solution to linear parabolic equation have been obtained in paper [19].
Iterative finite element approximations of the solutions to parabolic equations with certain nonlocal initial
conditions have been studied in [20]. For the numerical solution of nonlinear parabolic problems with a
nonlocal initial condition, iterative finite difference schemes have been proposed and analyzed in [21, 22].
In papers [23, 24], the finite difference schemes for the one-dimensional parabolic (heat) equation with
nonlocal discrete initial conditions were examined. For the solution of this problem, a polynomial-based
collocation technique has been suggested in paper [25].

For the numerical solution of nonlinear parabolic problems with a nonlocal initial condition, and itera-
tive finite difference scheme has been investigated in papers [21, 22]. In [21], the stability and convergence
of several finite difference schemes have been studied.

In this paper, we extend the results presented in paper [21] to a more general class of methods, including
numerical schemes which were applied previously without studying their stability properties. Additionally,
we revise Theorem 3.2 proved in the paper [21] by adding a new constraint for the time step size. The
revised analysis leads to the stability conditions which were not considered in [21, 23]. The numerical
results presented in this paper show that conditions provided in [21, 23] cannot guarantee the stability of
the corresponding numerical schemes. Also, we demonstrate that in some particular cases the forward-time
central-space (FTCS) explicit numerical scheme is stable, while some implicit methods (such as Crank–
Nicolson scheme) are not. From the point of view of the classical theory of finite difference schemes, this
is a quite surprising result. The examined methods can be naturally extended for nonlinear problems. For
illustration, we present the results of a numerical experiment with a nonlinear problem.

The paper is organized as follows. The two-level finite difference schemes for the solution of the consid-
ered nonclassical problem are presented in Section 2. In Section 3, we analyze these schemes by studying
their stability and accuracy properties. To verify the theoretical results and demonstrate the efficiency of
the methods, several numerical experiments have been conducted. The results of these experiments are
presented in Section 4. Finally, some remarks in Section 5 conclude the paper.
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2. Two-level finite difference schemes

For the numerical solution of the considered problem (1)–(2) we apply the finite difference technique [26–
29]. We construct a family of finite difference schemes depending on several parameters.

The problem domain Ω × [0,T ] is discretized by the uniformly distributed grid points (xi, tn), where

xi = ih, i = 0, 1, . . . ,N, Nh = L,

tn = nτ, n = 0, 1, . . . ,M, Mτ = T,

where h and τ are space and time step sizes. We assume that {T1,T2, . . . ,Tm} ⊂ {t0, t1, . . . , tM} and T j = tn j

for some n j ∈ {0, 1, . . . ,M}.
The one-dimensional parabolic equation (1) is approximated by the following finite difference equa-

tions:

un+1
i − un

i

τ
= σ

un+1
i−1 − 2un+1

i + un+1
i+1

h2 + (1 − σ)
un

i−1 − 2un
i + un

i+1

h2

+ c00 f n+1
i−1 + c01 f n+1

i + c00 f n+1
i+1 + c10 f n

i−1 + c11 f n
i + c10 f n

i+1,

(4)

where σ is the weight of the scheme (0 ≤ σ ≤ 1), and c00, c01, c10, c11 are coefficients to be determined
later (see Section 3.2). Depending on the values of σ, we distinguish several special cases:
• σ = 1: the backward-time central-space (BTCS) scheme;
• σ = 1/2: the Crank–Nicolson scheme;
• σ = 0: the forward-time central-space (FTCS) scheme;
• σ = 1/2 − 1/(12s), s = τ/h2: the Crandall’s scheme.

The BTCS and Crank–Nicolson schemes are implicit, while the FTCS scheme is explicit. If s = 1/6, the
Crandall’s scheme also becomes explicit (otherwise, it is implicit).

From the homogeneous boundary condition (2) we have

un
0 = 0, un

N = 0, n = 0, 1, . . . ,M. (5)

The finite difference schemes are applied iteratively as it is explained in Section 3.3. For the initialization
of the iterative procedure, we need initial guess of the initial values u0

i . In each iteration, these values are
updated using a discretized version of nonlocal initial condition (3) (see Section 3.3).

3. Analysis of the schemes

In this section, we analyze the stability of the finite difference schemes constructed in Section 2. We also
obtain conditions ensuring the second or fourth order accuracy. Finally, we present an iterative procedure
for the solution of the finite difference schemes.

3.1. Stability

We prove the stability of the considered numerical schemes by generalizing the idea used in [21, Theo-
rem 3.1]. We will need an assumption similar to (H2) in [21]. Let us assume that

M∑
n=1

|α̃n| exp {−tnλmin} = % < 1. (H)
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We define the (N − 1) × (N − 1) matrix

Λ = h−2



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2
. . . 0 0 0

· · · · · ·
. . .

. . .
. . . · · · · · ·

0 0 0
. . . 2 −1 0

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


and rewrite the finite difference equations (4) in the following form:

(I + στΛ)Un+1 = (I − (1 − σ)τΛ)Un + τFn+1, (6)

where I is the identity matrix of order N − 1, U = (u1, u2, . . . , uN−1)T is unknown vector, and Fn+1 is given
(N − 1)-dimensional vector. From (6) it follows that

Un+1 = SUn + F
n+1

,

where

S = (I + στΛ)−1(I − (1 − σ)τΛ), F
n+1

= τ(I + στΛ)−1Fn+1.

Thus, we obtain that

Un = SnU0 +

n∑
m=0

Sn−mF
m
.

It is well-known that the eigenvalues of the matrix Λ are real, positive and algebraically simple num-
bers [30]:

λi(Λ) =
4
h2 sin2

( iπh
2

)
, i = 1, 2, . . . ,N − 1.

Therefore,

λmin := min
i=1,2,...,N−1

λi(Λ) = λ1(Λ) = π2 − ε1,h,

and

λmax := max
i=1,2,...,N−1

λi(Λ) = λN−1(Λ) = 4(N − 1)2 − ε2,h,

where ε1,h and ε2,h are positive constants (ε1,h, ε2,h → 0, when h→ 0).
The eigenvalues of the matrix S can be expressed as

λi(S) =
1 − (1 − σ)τλi(Λ)

1 + στλi(Λ)
, i = 1, 2, . . . ,N − 1,
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Then

‖S‖ = ‖(I + στΛ)−1(I − (1 − σ)τΛ)‖ ≤ max
i=1,2,...,N−1

∣∣∣∣1 − (1 − σ)τλi(Λ)
1 + στλi(Λ)

∣∣∣∣ = ρ(S),

and the inequality ‖S‖ < 1 is ensured, if

σ >
1
2
−

1
τρ(Λ)

,

where ρ(Λ) is the spectral radius of the matrix Λ:

ρ(Λ) =
4
h2 cos2

(πh
2

)
.

The inequality ‖S‖ < 1 is enough to guarantee the stability of the finite difference scheme for the problem
with a classical initial condition. However, in the case of nonlocal initial condition, this is not always the
case.

In paper [21], the spectral radius of the matrix S is defined as

ρ(S) =
1 − (1 − σ)τλmin

1 + στλmin
, (7)

i.e., the absolute value | · | is not used in the definition of ρ(S). Under this assumption, the unconditional
stability of the Crank–Nicolson scheme is proved (see [21, Theorem 3.2]). However, as we will theoreti-
cally prove and demonstrate in numerical examples, the Crank–Nicolson scheme for the problem with the
nonlocal initial condition is not unconditionally stable.

Let us study the stability under the assumption that (7) holds true. Below we demonstrate in which cases
(7) is not correct and formulate additional conditions that are required for the stability and, consequently,
convergence.

If the spectral radius of the matrix S is defined by (7), we obtain that

‖Un‖ ≤
(1 − (1 − σ)τλmin

1 + στλmin

)n
‖U0‖ +

n∑
m=0

(1 − (1 − σ)τλmin

1 + στλmin

)n−m
‖F

m
‖.

The elementary inequality

1
1 + v

< exp
{
−

v
1 + v

}
, v > 0,

can be applied here. Hence, if we assume that v is such that

1
1 + v

=
1 − (1 − σ)τλmin

1 + στλmin
,

i.e. v = τλmin/(1 − (1 − σ)τλmin) and τλmin/(1 − (1 − σ)τλmin) > 0, then

σ > 1 −
1

τλmin
.

We can easily check that(1 − (1 − σ)τλmin

1 + στλmin

)n
<

(
exp

{
−

τλmin

1 + στλmin

})n
= exp

{
−

tnλmin

1 + στλmin

}
.
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Actually, since

−
tnλmin

1 + στλmin
= −tnλmin(1 − στλmin + · · · ) ≤ −tnλmin + Tστλ2

min,

for small τ, we obtain that(1 − (1 − σ)τλmin

1 + στλmin

)n
< exp {−tnλmin} exp {Tστλ2

min}.

By using the expression above and the initial condition (12) it is easy to verify that

‖U0‖ ≤

M∑
n=1

(
|α̃n| · ‖Un‖

)
+ ‖Φ‖

≤

M∑
n=1

|α̃n| exp {−tnλmin} exp {Tστλ2
min}‖U

0‖ +

n∑
m=0

‖F
m
‖ + ‖Φ‖,

where Φ = (ϕ(x1), . . . , ϕ(xN−1))T . Assuming (H), there exists τ0 = − log %/(Tσλ2
min) > 0 such that

‖U0‖ ≤ C
[ n∑
m=0

‖F
m
‖ + ‖Φ‖

]
for all 0 < τ ≤ τ0.

Finally, let us check when

ρ(S) =
1 − (1 − σ)τλmin

1 + στλmin
.

It is clear that the function

f (τλ) :=
1 − (1 − σ)τλ

1 + στλ

decreases when τλ increases since its derivative with respect to τλ is

−
1

(1 + τλσ)2 < 0,

and f (τλ)→ 1 when τλ→ 0. Hence, if 0 ≤ σ ≤ 1, then

1 − (1 − σ)τλmin

1 + στλmin

is positive whenever τ < 1/λmin, and

max
i=1,2,...,N−1

∣∣∣∣1 − (1 − σ)τλi(Λ)
1 + στλi(Λ)

∣∣∣∣ = max
(1 − (1 − σ)τλmin

1 + στλmin
,−

1 − (1 − σ)τλmax

1 + στλmax

)
.

It is also clear that

−
1 − (1 − σ)τλmax

1 + στλmax
≤

1 − (1 − σ)τλmin

1 + στλmin
, (8)
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if

0 < τ ≤ τ∗0 =
γ(1 − 2σ) −

√
γ2(1 − 2σ)2 − 16λminλmaxσ(σ − 1)
4λminλmaxσ(σ − 1)

,

where γ = λmin + λmax. Additionally, the left-hand side of inequality (8) decreases when σ increases, while
the right-hand side increases when σ increases. Hence, if 0 ≤ σ ≤ 1, the most restrictive case (for the
inequality (8)), as it is expected, is σ = 0 and it holds whenever τ ≤ 2/γ.

Under the assumption (H), we prove the following theorem:

Theorem 1. If 0 < σ ≤ 1, then there exists a constant C > 0 independent on τ and h such that

max
0≤n≤M

‖Un‖ ≤ C
( n∑
m=0

‖F
m
‖ + ‖Φ‖

)
(9)

for all 0 < τ ≤ τ0 = min (− log %/(Tσλ2
min), τ∗0).

Consequently, we obtain corollaries for the various finite difference schemes described in Section 2.

Corollary 2. If σ = 1 (BTCS scheme), then there exists constant C > 0 independent on τ and h such that
the estimate (9) is valid for all 0 < τ ≤ τ0 = − log %/(Tλ2

min).

This result is similar to the one obtained in [21], but in this case (when σ = 1), (8) holds for any value
of τ.

Corollary 3. If σ = 1/2 (Crank–Nicolson scheme), then there exists constant C > 0 independent on τ and
h such that the estimate (9) is valid for all 0 < τ ≤ τ0 = 2 min (− log %/(Tλ2

min), 1/
√
λminλmax).

The stability condition the Crank–Nicolson scheme is different from the one obtained in [21]. Moreover,
in the paper [23] it is stated that the Crank–Nicolson scheme for the heat equation with the nonlocal initial
condition is unconditionally stable in the sense of von Neumann. In fact, the nonlocal initial condition
affects the stability of the Crank–Nicolson scheme.

Corollary 4. If σ = 1/2 − 1/(12s), s = τ/h2 (Crandall’s scheme), then there exists constant C > 0
independent on τ and h such that the estimate (9) is valid for all 0 < τ ≤ τ0 = min (− log %/(Tσλ2

min), τ̂0),
where

τ̂0 =
6s

(
λmin + λmax −

√
(λmin − λmax)2 + 144λminλmaxs2

)
λminλmax(1 − 36s2)

. (10)

Remark 5. In Corollary 4, τ̂0 is given as a function depending on s = τ/h2. Given T and h (and, therefore,
λmin and λmax), it is possible to obtain the bound τ̂0 by substituting s with τ̂0/h2 in (10) and solving a
nonlinear equation.

Corollary 6. If σ = 0 (FTCS scheme), then there exists C > 0 independent on τ and h such that the estimate
(9) is valid for all 0 < τ ≤ τ0 = 2/(λmin + λmax).

Corollary 7. There exists C > 0 independent on τ and h such that the estimate (9) is valid for all 0 < τ ≤

τ0 = − log %/(Tσλ2
min), whenever

σ >
λminλmaxτ0 − γ −

√
(λmin − λmax)2 + (λminλmaxτ0)2

2γτ0
.

Remark 8. Similarly as in Corollary 4, τ0 is given as a function depending onσ, whereσ satisfies condition
depending on τ0. Given %, T and h (and, therefore, λmin, λmax and γ), one can obtain the bound for τ0, by
substituting σ with the expression depending on τ0 and solving a nonlinear equation.
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3.2. Accuracy

By using Taylor series in (4), taking τ = sh2 (for a fixed value of s) and

ut − uxx − f ≡ 0,

(i.e. it is also necessary to consider that utt − utxx − ft = 0, utx − uxxx − fx = 0, . . . ), we obtain the local
truncation error of the finite difference equations:

−(2c00 + c01 + 2c10 + c11 − 1) f

+(1/12) (−6(2c00 + 2c10 − s + 2sσ) fxx + (−1 + 6s − 12sσ)uxxxx − 6(−1 + 4c00 + 2c01)s ft) h2 + O(h4).

In order to achieve the second order accuracy, it is necessary that coefficients c00, c01, c10, c11 would satisfy
condition

2c00 + c01 + 2c10 + c11 − 1 = 0. (11)

Additionally, if we aim to achieve the fourth order accuracy, it is necessary to add three more conditions:

2c00 + 2c10 − s + 2sσ = 0,

1 − 6s + 12sσ = 0,

(−1 + 4c00 + 2c01)s = 0.

Explicit schemes for the solution of linear problems are obtained with σ = 0. In the case of nonlinear
problems, we need c00 = 0 and c01 = 0 (otherwise, one needs to solve a nonlinear system in each iteration).
Obviously, from (4) it is not possible to obtain an explicit fourth order scheme for nonlinear problems, but
the second order accuracy is possible.

In a similar way, the fourth order finite difference schemes have been derived and applied to solve PDEs
with nonlocal boundary conditions [31–33].

Remark 9. Above we imposed τ = sh2 for a fixed s to the finite difference equations given in (4) (many
of the methods used in Section 4 require this condition in order to obtain an optimal convergence). When
(11) is also satisfied, this is enough to obtain the second order accuracy. However, the convergence of the
methods proposed below can be very different: while the truncation error of BTCS and FTC schemes is
O(τ + h2), for Crank–Nicolson scheme it is O(τ2 + h2). Hence, this method is often applied with τ = sh.

3.3. Implementation of the iterative solution procedure

The numerical schemes are applied iteratively. First of all, we discretize the nonlocal initial condition
(3) in the following way:

(u0
i )(l+1) =

m∑
j=1

α j(u
n j
i )(l) + τ

M∑
n=0

wnυ(tn)(un
i )(l) + ϕ(xi), i = 1, 2, . . . ,N − 1,

i.e.

(u0
i )(l+1) =

M∑
n=0

α̃n(un
i )(l) + ϕ(xi), i = 1, 2, . . . ,N − 1, (12)
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where

α̃n =

τwnυ(tn) + αn, if tn ∈ {T1,T2, . . . ,Tm},
τwnυ(tn), otherwise,

real positive numbers wn are the coefficients of the numerical integration formula, and l is the iteration
number. For example, in case of the second order composite formula (trapezoid rule) we have w0 = wM =

1/2, w1 = w2 = · · · = wM−1 = 1, and for the fourth order composite formula w0 = wM = 1/3, w1 =

w3 = . . . = wM−1 = 4/3, w2 = w4 = . . . = wM−2 = 2/3 (M is even). If the sixth order composite formula
is applied, then w0 = wM = 7w̃, w1 = w3 = . . . = wM−1 = 32w̃, w2 = w6 = . . . = wM−2 = 12w̃,
w4 = w8 = . . . = wM−4 = 14w̃, where w̃ = 2/45 (M is a multiple of 4).

The iterative solution procedure is executed in the following way:
Step 1: The initial guess is set to be (u0

i )(0) = 0, i = 0, 1, . . . ,N.
Step 2: The values (un

i )(l) are computed using numerical scheme (4) and (5) (l is the number of current
iteration).

Step 3: If the termination criterion

‖(u0
i )(l) − (u0

i )(l−1)‖ ≤ TOL

is not satisfied (TOL is a prescribed tolerance; in our experiments, TOL = 0.1hp, p is the order of the
method), the next iteration (Step 2) is executed with initial values updated using discretized nonlocal
initial condition.

The iterative procedure can be applied to solve not only nonlocal linear heat equation but a nonlinear
one too. This is one important advantage of iterative finite difference methods (see [21]) with respect to, for
example, spectral or pseudo-spectral methods [34]. However, in a nonlinear case also it would be necessary
to study the stability of the scheme and the stability conditions can be different.

4. Numerical examples

To justify the theoretical results and investigate the efficiency of the considered numerical schemes,
we have analyzed several test examples, including an illustrative example of a nonlinear problem. In this
section, we present and discuss the results.

4.1. Technical details

In our experiments, we applied four numerical schemes with different integration rules:
Scheme 1: σ = 1, BTCS, c01 = 1, c00 = c10 = c11 = 0, trapezoid formula (p = 2);
Scheme 2: σ = 1/2, Crank–Nicolson, c00 = c10 = 0, c01 = c11 = 1/2, trapezoid formula (p = 2);
Scheme 3: σ = 0, s = 1/6, an explicit Crandall’s method, c00 = 1/12, c01 = 1/3, c10 = 0, c11 = 1/2,

Simpson’s composite formula (p = 4);
Scheme 4: σ = 0, FTCS, c00 = c01 = c10 = 0, c11 = 1, trapezoid formula (p = 2).

Schemes 1 and 2 are implicit, while Schemes 3 and 4 are explicit.
The accuracy of the methods applied in the numerical examples was estimated by calculating absolute

errors in the last iteration

E = |u(xi, tn) − un
i |
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on certain points xi and time moments tn, or the maximum norm of the absolute error

E∞ = max
0≤i≤N
0≤n≤M

|u(xi, tn) − un
i |.

All numerical examples are formulated on the unit spatial interval (Ω = (0, 1), i.e. L = 1).

4.2. Test 1: Problem with nonlocal discrete initial condition

In the first example, we consider the problem with nonlocal discrete initial condition (υ(t) ≡ 0) [23–25].
The functions f (x, t) and ϕ(x) are chosen so that the function

u(x, t) = sin (πx) exp (−t)

is the exact solution of the problem, i.e.

f (x, t) = (π2 − 1) sin (πx) exp (−t),

ϕ(x) = − sin (πx)
m∑

j=1

α j exp (−T j).

We set m = 2 and T1 = 0.5, T2 = T = 1, α1 = −α2 = 1.
Numerical results are reported in Table 1. Schemes 1 and 2 demonstrate the accuracy of the second

order, while the accuracy of the Scheme 3 is of the order four.

4.3. Test 2: Problem with nonlocal discrete–integral initial condition

The second test example involves an integral term in the nonlocal initial condition (υ(t) ≡ 1). We choose
T = 1, m = 4 and α j = −1, T j = j/m for 1 ≤ j ≤ m. If

f (x, t) =
4π

1 + t
(4πx2 sin (2πx2) − cos (2πx2)) −

sin (2πx2)
(1 + t)2 ,

ϕ(x) = sin (2πx2)
(
1 −

m∑
j=1

α j

1 + T j
− log (1 + T )

)
,

then the exact solution of the problem is

u(x, t) =
sin (2πx2)

1 + t
.

The results are reported in Fig. 1 and Table 2. In Fig. 1 we present the numerical approximation of
initial values u(x, 0) obtained in first two iterations of Scheme 3. The orders of accuracy for Schemes 1–3
are presented in Table 2 and they are the same as in the previous example. However, the iterative procedure
requires more iterations in order to achieve the prescribed accuracy.
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Table 1
Absolute errors (t = 1, x = 0.25, 0.5 and 0.75), order of accuracy and the total number of iterations required to achieve the prescribed
accuracy: Test 1, τ = sh2 (s = 4 for Schemes 1 and 2, s = 1/6 for Scheme 3)

Errors Order Number of
iterations

x = 0.25 x = 0.5 x = 0.75

Scheme 1
h = 1/20 7.43804 · 10−4 1.0519 · 10−3 7.43804 · 10−4 – 3
h = 1/40 1.85561 · 10−4 2.62423 · 10−4 1.85561 · 10−4 ∼ 2.00303 3
h = 1/80 4.63666 · 10−5 6.55723 · 10−5 4.63666 · 10−5 ∼ 2.00188 4
h = 1/160 1.15901 · 10−6 1.63909 · 10−5 1.15901 · 10−6 ∼ 2.00132 4
h = 1/320 2.89742 · 10−6 4.09758 · 10−6 2.89742 · 10−6 ∼ 2.001 4

Scheme 2
h = 1/20 5.95736 · 10−4 8.42497 · 10−4 5.95735 · 10−4 – 2
h = 1/40 1.48814 · 10−4 2.10456 · 10−4 1.48814 · 10−4 ∼ 2.00115 3
h = 1/80 3.71968 · 10−5 5.26043 · 10−5 3.71968 · 10−5 ∼ 2.00071 4
h = 1/160 9.29874 · 10−6 1.31504 · 10−5 9.29874 · 10−6 ∼ 2.0005 4
h = 1/320 2.32464 · 10−6 3.28755 · 10−6 2.32464 · 10−6 ∼ 2.00038 4

Scheme 3
h = 1/12 6.53692 · 10−6 9.24461 · 10−6 6.53692 · 10−6 – 4
h = 1/24 4.07833 · 10−7 5.76763 · 10−7 4.07833 · 10−7 ∼ 4.00256 5
h = 1/48 2.54782 · 10−8 3.60316 · 10−8 2.54782 · 10−8 ∼ 4.0016 5
h = 1/96 1.59233 · 10−9 2.25189 · 10−9 1.59233 · 10−9 ∼ 4.00109 6
h = 1/192 9.99528 · 10−11 1.41368 · 10−10 9.99524 · 10−11 ∼ 3.99922 6

Table 2
Absolute errors (t = 1, x = 0.25, 0.5 and 0.75), order of accuracy and the total number of iterations required to achieve the prescribed
accuracy: Test 2, τ = sh2 (s = 4 for Schemes 1 and 2, s = 1/6 for Scheme 3).

Errors Order Number of
iterations

x = 0.25 x = 0.5 x = 0.75

Scheme 1
h = 1/20 6.77636 · 10−4 5.75261 · 10−3 7.68408 · 10−4 – 4
h = 1/40 1.62955 · 10−4 1.41878 · 10−3 2.24531 · 10−4 ∼ 2.01956 4
h = 1/80 4.03533 · 10−5 3.5352 · 10−4 5.80869 · 10−5 ∼ 2.01218 4
h = 1/160 1.00645 · 10−5 8.83068 · 10−5 1.46428 · 10−5 ∼ 2.00852 5
h = 1/320 2.51464 · 10−6 2.20721 · 10−5 3.66824 · 10−6 ∼ 2.00646 5

Scheme 2
h = 1/20 6.16576 · 10−4 5.66897 · 10−3 8.0206 · 10−4 – 4
h = 1/40 1.47886 · 10−4 1.39819 · 10−3 2.32869 · 10−4 ∼ 2.01952 4
h = 1/80 3.65987 · 10−5 3.48391 · 10−4 6.01665 · 10−5 ∼ 2.01215 4
h = 1/160 9.12664 · 10−6 8.70259 · 10−5 1.51623 · 10−5 ∼ 2.0085 5
h = 1/320 2.28022 · 10−6 2.1752 · 10−5 3.79811 · 10−6 ∼ 2.00645 5

Scheme 3
h = 1/12 2.79303 · 10−4 8.23333 · 10−4 1.41436 · 10−3 – 5
h = 1/24 1.57131 · 10−5 4.82578 · 10−5 8.14607 · 10−5 ∼ 4.09264 5
h = 1/48 9.56521 · 10−7 2.96915 · 10−6 4.98878 · 10−6 ∼ 4.05764 6
h = 1/96 5.93899 · 10−8 1.8485 · 10−7 3.10219 · 10−7 ∼ 4.0403 7
h = 1/192 3.70605 · 10−9 1.15423 · 10−8 1.93642 · 10−8 ∼ 4.03057 8
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Fig. 1. Numerical approximation of the initial value u(x, t = 0) at the initialization and after the first two iterations: Test 2,
Scheme 3, τ = sh2, s = 1/6, h = 1/24; approximate values (top) and absolute errors (bottom).
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Table 3
Maximum norms of the absolute error (E∞): Test 3, Scheme 2, h = 1/400.

Errors E∞

Iteration τ = 1/200 τ = 1/1000 τ = 1/2000

1 9.996716 · 10−1 1.047698 · 100 1.053871 · 100

2 1.297642 · 10−3 1.351188 · 10−3 1.357894 · 10−3

3 5.946431 · 10−4 2.587616 · 10−5 2.608255 · 10−5

4 3.209209 · 10−3 2.404325 · 10−5 2.424209 · 10−5

5 1.909528 · 10−2 2.404579 · 10−5 2.424464 · 10−5

6 1.202271 · 10−1 2.404579 · 10−5 2.424464 · 10−5

7 7.857214 · 10−1 2.404579 · 10−5 2.424464 · 10−5

8 5.273521 · 100 2.404579 · 10−5 2.424464 · 10−5

9 3.611163 · 101 2.404579 · 10−5 2.424464 · 10−5

10 2.511983 · 102 2.404579 · 10−5 2.424464 · 10−5

4.4. Test 3: Stability of Crank–Nicolson scheme
Now let us consider again the problem with nonlocal discrete condition (υ(t) ≡ 0). The functions f (x, t)

and ϕ(x) are chosen so that the function

u(x, t) = (sin (πx) + cos (πx) + 2x − 1) exp (−t)

is the exact solution of the problem, i.e.

f (x, t) = ((π2 − 1)(sin (πx) + cos (πx)) − (2x − 1)) exp (−t),

ϕ(x) = (sin (πx) + cos (πx) + 2x − 1)
(
1 −

m∑
j=1

α j exp (−T j)
)
.

In this numerical experiment, we use T = 1, m = 1, α1 = −10 and T1 = 0.9.
We solve this problem using Scheme 2 with h = 1/400. According to Theorem 3.2 in paper [21], this

scheme should be stable if the time step τ < τ0 = − log (|α1| exp (−π2T1))/π4 ≈ 0.0675508. However, from
Table 3 we see that Scheme 2 is unstable with τ = 1/200 < τ0.

Corollary 4 suggests τ0 = 1/(399π) ≈ 0.0007977. In Table 3 we present results obtained with τ =

1/2000 < τ0 and we see that Scheme 2 is stable. The revised constraint for the time step size is sufficient
but not necessary to ensure the stability. For example, from Table 3 we can see that Scheme 2 is stable with
τ = 1/1000 > τ0.

4.5. Test 4: Stability of FTCS and Crank–Nicolson schemes
In this example, the test problem has the same solution as in Test 3, but now T1 = 0.25 and α1 = −11.75.
We use h = 1/20. Therefore, according to Theorem 1 and Corollaries 3 and 6, the Crank–Nicolson

scheme (Scheme 2) is stable whenever τ < 0.0000728445, and for FTCS scheme (Scheme 4) this bound
is approximately equal to 0.00137564. Let us say that τ = 0.001. Then our theoretical results state that
FTCS (explicit) scheme is stable. From the classical point of view, the Crank–Nicolson (implicit) scheme
should be stable too. However, the time step value 0.001 is larger than required in Corollary 3 and, as we
can see from Fig. 2, the Crank–Nicolson scheme is unstable. The values of α1 and ‖S‖ act as amplification
factors, and ‖S‖ is closer to 1 for the Crank–Nicolson scheme than for FTCS scheme. Therefore, the iterative
procedure diverges.

Additionally, when α1 < −11.7918, the condition (H) is not satisfied and Scheme 4 does not converge
even for very small values of τ.

13



0 100 200 300 400 500 600 700 800 900 1000
Iteration

10-2

10-1

100

101

E
rr

or

Scheme 4 (FTCS)

Fig. 2. Maximum norms of the absolute error (E∞): Test 4, Schemes 2 and 4, τ = 1/1000, h = 1/20.

4.6. Test 5: Nonlinear problem

In this paper, we focus attention on the finite difference schemes applied to linear problems. For such
problems there exist many other numerical techniques and some of them can be even more accurate and
efficient. An important advantage of the finite difference technique is that numerical schemes can be easily
implemented for nonlinear problems. In such cases, it is necessary to solve a nonlinear system in each
iteration.

The convergence and stability of the numerical scheme need to be studied separately for each nonlinear
problem. Assuming that the solution u(x, t) (and its discrete counterpart) does not vary too rapidly, such
problems also can be analyzed by linearization.

As an example we solve a nonlinear parabolic equation

∂u
∂t
−
∂2u
∂x2 = −u5 + f (x, t), (x, t) ∈ Ω × (0,T ),

subject to homogeneous boundary conditions and nonlocal discrete initial condition (3) with α1 = 1, T1 = 1
(υ(t) ≡ 0). The functions f (x, t) and ϕ(x) are such that the exact solution is u(x, t) = sin(t) sin(πx):

f (x, t) = (cos(t) + π2 sin(t) + sin(πx4) sin(t)5) sin(πx),

ϕ(x) = − sin(1) sin(πx).

We solve this problem using Scheme 4 with τ = h2/6. Results are provided in Table 4. We observe the
second order accuracy. In this case, two iterations are enough to obtain the prescribed accuracy.
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Table 4
Absolute errors (t = 1), order of accuracy and the total number of iterations required to achieve the prescribed accuracy: Test 5,
Scheme 4, τ = h2/6.

Errors Order Number of
iterations

x = 0.25 x = 0.5 x = 0.75

Scheme 4
h = 1/20 1.03549 · 10−3 1.43757 · 10−3 1.03549 · 10−3 – 2
h = 1/40 2.58719 · 10−4 3.59293 · 10−4 2.58719 · 10−4 ∼ 2.0004 2
h = 1/80 6.46702 · 10−5 8.9817 · 10−5 6.46702 · 10−5 ∼ 2.00025 2
h = 1/160 1.6167 · 10−5 2.24539 · 10−5 1.6167 · 10−5 ∼ 2.00017 2

5. Concluding remarks

In this paper, the two-level finite difference schemes for the one-dimensional heat equation with the
nonlocal initial condition have been analyzed. We have revised analysis provided in paper [21] and obtained
additional restrictions for the time step.

We have demonstrated that the explicit FTCS scheme can be stable while some implicit methods, such
as Crank–Nicolson scheme, are unstable. This observation is unexpected from the classical point of view.
However, it can be explained by nonlocal nature of initial conditions in the examined problem and itera-
tive procedure for the solution of numerical schemes. Theoretically, we have considered a linear problem
only. However, numerically we have checked that the numerical properties of finite difference schemes in a
nonlinear case can be similar.

The stability conditions (restrictions for the time step size) we obtained in this paper are related to the
minimal and maximal eigenvalues of the tridiagonal symmetric matrix corresponding to the central finite
differences. It makes these conditions difficult to apply in practice. In the future, it would be interesting to
obtain stability conditions which would allow direct determination of the time step size. Another important
direction for the future work is the construction of the numerical schemes for multidimensional PDEs with
nonlocal initial conditions and the corresponding extension of the theoretical results.
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